67 resultados para Climate impacts


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ensuring sustainable use of natural resources is crucial for maintaining the basis for our livelihoods. With threats from climate change, disputes over water, biodiversity loss, competing claims on land, and migration increasing worldwide, the demands for sustainable land management (SLM) practices will only increase in the future. For years already, various national and international organizations (GOs, NGOs, donors, research institutes, etc.) have been working on alternative forms of land management. And numerous land users worldwide – especially small farmers – have been testing, adapting, and refining new and better ways of managing land. All too often, however, the resulting SLM knowledge has not been sufficiently evaluated, documented and shared. Among other things, this has often prevented valuable SLM knowledge from being channelled into evidence-based decision-making processes. Indeed, proper knowledge management is crucial for SLM to reach its full potential. Since more than 20 years, the international WOCAT network documents and promotes SLM through its global platform. As a whole, the WOCAT methodology comprises tools for documenting, evaluating, and assessing the impact of SLM practices, as well as for knowledge sharing, analysis and use for decision support in the field, at the planning level, and in scaling up identified good practices. In early 2014, WOCAT’s growth and ongoing improvement culminated in its being officially recognized by the UNCCD as the primary recommended database for SLM best practices. Over the years, the WOCAT network confirmed that SLM helps to prevent desertification, to increase biodiversity, enhance food security and to make people less vulnerable to the effects of climate variability and change. In addi- tion, it plays an important role in mitigating climate change through improving soil organic matter and increasing vegetation cover. In-depth assessments of SLM practices from desertification sites enabled an evaluation of how SLM addresses prevalent dryland threats. The impacts mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Among others, favourable local-scale cost-benefit relationships of SLM practices play a crucial role in their adoption. An economic analysis from the WOCAT database showed that land users perceive a large majority of the technologies as having benefits that outweigh costs in the long term. The high investment costs associated with some practices may constitute a barrier to adoption, however, where appropriate, short-term support for land users can help to promote these practices. The increased global concerns on climate change, disaster risks and food security redirect attention to, and trigger more funds for SLM. To provide the necessary evidence-based rationale for investing in SLM and to reinforce expert and land users assessments of SLM impacts, more field research using inter- and transdisciplinary approaches is needed. This includes developing methods to quantify and value ecosystem services, both on-site and off-site, and assess the resilience of SLM practices, as currently aimed at within the EU FP7 projects CASCADE and RECARE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims Climate and human impacts are changing the nitrogen (N) inputs and losses in terrestrial ecosystems. However, it is largely unknown how these two major drivers of global change will simultaneously influence the N cycle in drylands, the largest terrestrial biome on the planet. We conducted a global observational study to evaluate how aridity and human impacts, together with biotic and abiotic factors, affect key soil variables of the N cycle. Location Two hundred and twenty-four dryland sites from all continents except Antarctica widely differing in their environmental conditions and human influence. Methods Using a standardized field survey, we measured aridity, human impacts (i.e. proxies of land uses and air pollution), key biophysical variables (i.e. soil pH and texture and total plant cover) and six important variables related to N cycling in soils: total N, organic N, ammonium, nitrate, dissolved organic:inorganic N and N mineralization rates. We used structural equation modelling to assess the direct and indirect effects of aridity, human impacts and key biophysical variables on the N cycle. Results Human impacts increased the concentration of total N, while aridity reduced it. The effects of aridity and human impacts on the N cycle were spatially disconnected, which may favour scarcity of N in the most arid areas and promote its accumulation in the least arid areas. Main conclusions We found that increasing aridity and anthropogenic pressure are spatially disconnected in drylands. This implies that while places with low aridity and high human impact accumulate N, most arid sites with the lowest human impacts lose N. Our analyses also provide evidence that both increasing aridity and human impacts may enhance the relative dominance of inorganic N in dryland soils, having a negative impact on key functions and services provided by these ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Throughout the last millennium, mankind was affected by prolonged deviations from the climate mean state. While periods like the Maunder Minimum in the 17th century have been assessed in greater detail, earlier cold periods such as the 15th century received much less attention due to the sparse information available. Based on new evidence from different sources ranging from proxy archives to model simulations, it is now possible to provide an end-to-end assessment about the climate state during an exceptionally cold period in the 15th century, the role of internal, unforced climate variability and external forcing in shaping these extreme climatic conditions, and the impacts on and responses of the medieval society in Central Europe. Climate reconstructions from a multitude of natural and human archives indicate that, during winter, the period of the early Spörer Minimum (1431–1440 CE) was the coldest decade in Central Europe in the 15th century. The particularly cold winters and normal but wet summers resulted in a strong seasonal cycle that challenged food production and led to increasing food prices, a subsistence crisis, and a famine in parts of Europe. As a consequence, authorities implemented adaptation measures, such as the installation of grain storage capacities, in order to be prepared for future events. The 15th century is characterised by a grand solar minimum and enhanced volcanic activity, which both imply a reduction of seasonality. Climate model simulations show that periods with cold winters and strong seasonality are associated with internal climate variability rather than external forcing. Accordingly, it is hypothesised that the reconstructed extreme climatic conditions during this decade occurred by chance and in relation to the partly chaotic, internal variability within the climate system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Institutions are one of the decisive factors which enable, constrain and shape adaptation to the impacts of climate change, variability and extreme events. However, current understanding of institutions in adaptation situations is fragmented across the scientific community, evidence diverges, and cumulative learning beyond single studies is limited. This study adopts a diagnostic approach to elaborate a nuanced understanding of institutional barriers and opportunities in climate adaptation by means of a model-centred meta-analysis of 52 case studies of public climate adaptation in Europe. The first result is a novel taxonomy of institutional attributes in adaptation situations. It conceptually organises and decomposes the many details of institutions that empirical research has shown to shape climate adaptation. In the second step, the paper identifies archetypical patterns of institutional traps and trade-offs which hamper adaptation. Thirdly, corresponding opportunities are identified that enable actors to alleviate, prevent or overcome specific institutional traps or trade-offs. These results cast doubt on the validity of general institutional design principles for successful adaptation. In contrast to generic principles, the identified opportunities provide leverage to match institutions to specific governance problems that are encountered in specific contexts. Taken together, the results may contribute to more coherence and integration of adaptation research that we need if we are to foster learning about the role of institutions in adaptation situations in a cumulative fashion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reconstructions of the deposition rate of windblown mineral dust in ocean sediments offer an important means of tracking past climate changes and of assessing the radiative and biogeochemical impacts of dust in past climates. Dust flux estimates in ocean sediments have commonly been based on the operationally defined lithogenic fraction of sediment samples. More recently, dust fluxes have been estimated from measurements of helium and thorium, as rare isotopes of these elements (He-3 and Th-230) allow estimates of sediment flux, and the dominant isotopes (He-4 and Th-232) are uniquely associated with the lithogenic fraction of marine sediments. In order to improve the fidelity of dust flux reconstructions based on He and Th, we present a survey of He and Th concentrations in sediments from dust source areas in East Asia, Australia and South America. Our data show systematic relationships between He and Th concentrations and grain size, with He concentrations decreasing and Th concentrations increasing with decreasing grain size. We find consistent He and Th concentrations in the fine fraction (<5 μm) of samples from East Asia, Australia and Central South America (Puna-Central West Argentina), with Th concentrations averaging 14 μg/g and He concentrations averaging 2 μcc STP/g. We recommend use of these values for estimating dust fluxes in sediments where dust is dominantly fine-grained, and suggest that previous studies may have systematically overestimated Th-based dust fluxes by 30%. Source areas in Patagonia appear to have lower He and Th contents than other regions, as fine fraction concentrations average 0.8 μcc STP/g and 9 μg/g for 4He and 232Th, respectively. The impact of grain size on lithogenic He and Th concentrations should be taken into account in sediments proximal to dust sources where dust grain size may vary considerably. Our data also have important implications for the hosts of He in long-traveled dust and for the 3He/4He ratio used for terrigenous He in studies of extraterrestrial He in sediments and ice. We also investigate the use of He/Th ratios as a provenance tracer. Our results suggest differences in fine fraction He/Th ratios between East Asia, Australia, central South America and Patagonia, with ratios showing a positive relationship with the geological age of source rocks. He/Th ratios may thus provide useful provenance information, for example allowing separation of Patagonian sources from Puna-Central West Argentina or Australian dust sources. He/Th ratios in open-ocean marine sediments are similar to ratios in the fine fraction of upwind dust source areas. He/Th ratios in mid-latitude South Atlantic sediments suggest that dust in this region primarily derives from the Puna-Central West Argentina region (23–32°S) rather than Patagonia (>38°S). In the equatorial Pacific, He/Th ratios are much lower than in extratropical Pacific sediments or potential source areas measured as a part of this study (East Asia, South America, Australia) for reasons that are at present unclear, complicating their use as provenance tracers in this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the issues of dual pricing and export restrictions in the energy sector, stressing the comparability of their economic and climate change impacts. It assesses whether WTO disciplines relevant and applicable to such practices are well-equipped to ensure fair access to energy resources. It finds that relevant GATT disciplines are overall deficient in the case of dual pricing and export taxes, while the landscape of WTO-plus obligations generally consisting of a network of narrowly tailored commitments. It discusses possible avenues to address such practices under the ASCM to the extent that they distort domestic energy prices and subsidize consumption of cheap fossil fuels

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the policy debate surrounding the actions needed to mitigate and adapt to anthropogenic climate change has been framed by observations of the past 150 years as well as climate and sea-level projections for the twenty-first century. The focus on this 250-year window, however, obscures some of the most profound problems associated with climate change. Here, we argue that the twentieth and twenty-first centuries, a period during which the overwhelming majority of human-caused carbon emissions are likely to occur, need to be placed into a long-term context that includes the past 20 millennia, when the last Ice Age ended and human civilization developed, and the next ten millennia, over which time the projected impacts of anthropogenic climate change will grow and persist. This long-term perspective illustrates that policy decisions made in the next few years to decades will have profound impacts on global climate, ecosystems and human societies — not just for this century, but for the next ten millennia and beyond.