115 resultados para Cellular beams


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular retinaldehyde-binding protein (CRALBP) is essential for mammalian vision by routing 11-cis-retinoids for the conversion of photobleached opsin molecules into photosensitive visual pigments. The arginine-to-tryptophan missense mutation in position 234 (R234W) in the human gene RLBP1 encoding CRALBP compromises visual pigment regeneration and is associated with Bothnia dystrophy. Here we report the crystal structures of both wild-type human CRALBP and of its mutant R234W as binary complexes complemented with the endogenous ligand 11-cis-retinal, at 3.0 and 1.7 A resolution, respectively. Our structural model of wild-type CRALBP locates R234 to a positively charged cleft at a distance of 15 A from the hydrophobic core sequestering 11-cis-retinal. The R234W structural model reveals burial of W234 and loss of dianion-binding interactions within the cleft with physiological implications for membrane docking. The burial of W234 is accompanied by a cascade of side-chain flips that effect the intrusion of the side-chain of I238 into the ligand-binding cavity. As consequence of the intrusion, R234W displays 5-fold increased resistance to light-induced photoisomerization relative to wild-type CRALBP, indicating tighter binding to 11-cis-retinal. Overall, our results reveal an unanticipated domino-like structural transition causing Bothnia-type retinal dystrophy by the impaired release of 11-cis-retinal from R234W.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Renewed interest in the measurement of cellular K(+) effluxes has been prompted by the observation that potassium plays an active and important role in numerous key cellular events, in particular cell necrosis and apoptosis. Although necrosis and apoptosis follow different pathways, both induce intracellular potassium effluxes. Here, we report the use of potassium-selective microelectrodes located in a microfluidic platform for cell culture to monitor and quantify such effluxes in real time. Using this platform, we observed and measured the early signs of cell lysis induced by a modification of the extracellular osmolarity. Furthermore, we were able to quantify the number of dying cells by evaluating the extracellular potassium concentration. A comparison between the potentiometric measurement with a fluorescent live-dead assay performed under similar conditions revealed the delay between potassium effluxes and cell necrosis. These results suggest that such platforms may be exploited for applications, such as cytotoxicological screening assays or tumor cell proliferation assays, by using extracellular K(+) as cell death marker.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CCN2 (connective tissue growth factor (CTGF/CCN2)) is a matricellular protein that utilizes integrins to regulate cell proliferation, migration and survival. The loss of CCN2 leads to perinatal lethality resulting from a severe chondrodysplasia. Upon closer inspection of Ccn2 mutant mice, we observed defects in extracellular matrix (ECM) organization and hypothesized that the severe chondrodysplasia caused by loss of CCN2 might be associated with defective chondrocyte survival. Ccn2 mutant growth plate chondrocytes exhibited enlarged endoplasmic reticula (ER), suggesting cellular stress. Immunofluorescence analysis confirmed elevated stress in Ccn2 mutants, with reduced stress observed in Ccn2 overexpressing transgenic mice. In vitro studies revealed that Ccn2 is a stress responsive gene in chondrocytes. The elevated stress observed in Ccn2-/- chondrocytes is direct and mediated in part through integrin α5. The expression of the survival marker NFκB and components of the autophagy pathway were decreased in Ccn2 mutant growth plates, suggesting that CCN2 may be involved in mediating chondrocyte survival. These data demonstrate that absence of a matricellular protein can result in increased cellular stress and highlight a novel protective role for CCN2 in chondrocyte survival. The severe chondrodysplasia caused by the loss of CCN2 may be due to increased chondrocyte stress and defective activation of autophagy pathways, leading to decreased cellular survival. These effects may be mediated through nuclear factor κB (NFκB) as part of a CCN2/integrin/NFκB signaling cascade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Monitoring alcohol use is important in numerous situations. Direct ethanol metabolites, such as ethyl glucuronide (EtG), have been shown to be useful tools in detecting alcohol use and documenting abstinence. For very frequent or continuous control of abstinence, they lack practicability. Therefore, devices measuring ethanol itself might be of interest. This pilot study aims at elucidating the usability and accuracy of the cellular photo digital breathalyzer (CPDB) compared to self-reports in a naturalistic setting. Method: 12 social drinkers were included. Subjects used a CPDB 4 times daily, kept diaries of alcohol use and submitted urine for EtG testing over a period of 5 weeks. Results: In total, the 12 subjects reported 84 drinking episodes. 1,609 breath tests were performed and 55 urine EtG tests were collected. Of 84 drinking episodes, CPDB detected 98.8%. The compliance rate for breath testing was 96%. Of the 55 EtG tests submitted, 1 (1.8%) was positive. Conclusions: The data suggest that the CPDB device holds promise in detecting high, moderate, and low alcohol intake. It seems to have advantages compared to biomarkers and other Monitoring devices. The preference for CPDB by the participants might explain the high compliance. Further studies including comparison with biomarkers and transdermal devices are needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virtualisation of cellular networks can be seen as a way to significantly reduce the complexity of processes, required nowadays to provide reliable cellular networks. The Future Communication Architecture for Mobile Cloud Services: Mobile Cloud Networking (MCN) is a EU FP7 Large-scale Integrating Project (IP) funded by the European Commission that is focusing on cloud computing concepts to achieve virtualisation of cellular networks. It aims at the development of a fully cloud-based mobile communication and application platform, or more specifically, it aims to investigate, implement and evaluate the technological foundations for the mobile communication system of Long Term Evolution (LTE), based on Mobile Network plus Decentralized Computing plus Smart Storage offered as one atomic service: On-Demand, Elastic and Pay-As-You-Go. This paper provides a brief overview of the MCN project and discusses the challenges that need to be solved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dilated cardiomyopathy is a serious and almost inevitable complication of Duchenne Muscular Dystrophy, a devastating and fatal disease of skeletal muscle resulting from the lack of functional dystrophin, a protein linking the cytoskeleton to the extracellular matrix. Ultimately, it leads to congestive heart failure and arrhythmias resulting from both cardiac muscle fibrosis and impaired function of the remaining cardiomyocytes. Here we summarize findings obtained in several laboratories, focusing on cellular mechanisms that result in degradation of cardiac functions in dystrophy. This article is part of a Special Issue entitled "Calcium Signaling in Heart".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell penetrating peptides (CPP) are peptides of 10 to 30 residues derived from natural translocating proteins. Multivalency is known to enhance cellular uptake for the Tat peptide and closely related polycationic sequences. To test whether multivalency effects on cellular uptake might also occur with other CPP types, we prepared multivalent versions of the strongly cationic Tat, the amphipathic sequences Antp, pVEC and TP10, and the polyproline helix SAP by convergent thioether ligation of the linear CPP onto multivalent scaffolds, and evaluated their uptake in HeLa and CHO cells, intracellular localization, cytotoxicity and hemolysis. While multivalency did not increase the cellular uptake of pVEC or SAP, multivalency effects on uptake comparable to Tat were observed with TP10 and Antp, which are attributable to their polycationic nature. The efficient synthetic protocol for these divalent CPP and their localization in the cytoplasm suggest that CPP might be useful for application in cargo delivery into cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Inhalative nanocarriers for local or systemic therapy are promising. Gold nanoparticles (AuNP) have been widely considered as candidate material. Knowledge about their interaction with the lungs is required, foremost their uptake by surface macrophages and epithelial cells.Diseased lungs are of specific interest, since these are the main recipients of inhalation therapy. We, therefore, used Scnn1b-transgenic (Tg) mice as a model of chronic obstructive pulmonary disease (COPD) and compared uptake and localization of inhaled AuNP in surface macrophages and lung tissue to wild-type (Wt) mice. METHODS: Scnn1b-Tg and Wt mice inhaled a 21-nm AuNP aerosol for 2 h. Immediately (0 h) or 24 h thereafter, bronchoalveolar lavage (BAL) macrophages and whole lungs were prepared for stereological analysis of AuNP by electron microscopy. RESULTS: AuNP were mainly found as singlets or small agglomerates of <= 100 nm diameter, at the epithelial surface and within lung-surface structures. Macrophages contained also large AuNP agglomerates (> 100 nm). At 0 h after aerosol inhalation, 69.2+/-4.9% AuNP were luminal, i.e. attached to the epithelial surface and 24.0+/-5.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 35.3+/-32.2% AuNP were on the epithelium and 58.3+/-41.4% in macrophages. The percentage of luminal AuNP decreased from 0 h to 24 h in both groups. At 24 h, 15.5+/-4.8% AuNP were luminal, 21.4+/-14.2% within epithelial cells and 63.0+/-18.9% in macrophages in Scnn1b-Tg mice. In Wt mice, 9.5+/-5.0% AuNP were luminal, 2.2+/-1.6% within epithelial cells and 82.8+/-0.2% in macrophages. BAL-macrophage analysis revealed enhanced AuNP uptake in Wt animals at 0 h and in Scnn1b-Tg mice at 24 h, confirming less efficient macrophage uptake and delayed clearance of AuNP in Scnn1b-Tg mice. CONCLUSIONS: Inhaled AuNP rapidly bound to the alveolar epithelium in both Wt and Scnn1b-Tg mice. Scnn1b-Tg mice showed less efficient AuNP uptake by surface macrophages and concomitant higher particle internalization by alveolar type I epithelial cells compared to Wt mice. This likely promotes AuNP depth translocation in Scnn1b-Tg mice, including enhanced epithelial targeting. These results suggest AuNP nanocarrier delivery as successful strategy for therapeutic targeting of alveolar epithelial cells and macrophages in COPD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogenic bacteria secrete pore-forming toxins that permeabilize the plasma membrane of host cells. Nucleated cells possess protective mechanisms that repair toxin-damaged plasmalemma. Currently two putative repair scenarios are debated: either the isolation of the damaged membrane regions and their subsequent expulsion as microvesicles (shedding) or lysosome-dependent repair might allow the cell to rid itself of its toxic cargo and prevent lysis. Here we provide evidence that both mechanisms operate in tandem but fulfill diverse cellular needs. The prevalence of the repair strategy varies between cell types and is guided by the severity and the localization of the initial toxin-induced damage, by the morphology of a cell and, most important, by the incidence of the secondary mechanical damage. The surgically precise action of microvesicle shedding is best suited for the instant elimination of individual toxin pores, whereas lysosomal repair is indispensable for mending of self-inflicted mechanical injuries following initial plasmalemmal permeabilization by bacterial toxins. Our study provides new insights into the functioning of non-immune cellular defenses against bacterial pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterial meningitis causes neurological sequelae in up to 50% of survivors. Two pathogens known for their propensity to cause severe neurological damage are Streptococcus pneumoniae and group B streptococci. Some forms of neuronal sequelae, such as learning and memory deficits, have been associated with neuronal injury in the hippocampus. To learn more about hippocampal injury in meningitis, we performed a comparative study in bacterial meningitis due to S. pneumoniae and group B streptococcus, in which 11-day-old infant rats were infected intracisternally with either of the two pathogens. Histopathological examination of the neuronal injury in the dentate gyrus of the hippocampus showed that S. pneumoniae caused predominantly classical apoptotic cell death. Cells undergoing apoptosis were located only in the subgranular zone and stained positive for activated caspase-3 and TUNEL. Furthermore, dividing progenitor cells seemed particularly sensitive to this form of cell death. Group B streptococcus was mainly responsible for a caspase-3-independent (and TUNEL-negative) form of cell death. Compared with the morphological features found in apoptosis (e.g., apoptotic bodies), this form of neuronal death was characterized by clusters of uniformly shrunken cells. It affected the dentate gyrus throughout the blade, showing no preferences for immature or mature neurons. Thus, depending on the infecting agent, bacterial meningitis causes two distinct forms of cell injury in the dentate gyrus.