150 resultados para Cartilage injection
Resumo:
PURPOSE: To perform baseline T(2) mapping of the hips of healthy volunteers, focusing on topographic variation, because no detailed study has involved hips. T(2) mapping is a quantitative magnetic resonance imaging (MRI) technique that evaluates cartilage matrix components. MATERIALS AND METHODS: Hips of 12 healthy adults (six men and six women; mean age = 29.5 +/- 4.9 years) were studied with a 3.0-Tesla MRI system. T(2) measurement in the oblique-coronal plane used a multi-spin-echo (MSE) sequence. Femoral cartilage was divided into 12 radial sections; acetabular cartilage was divided into six radial sections, and each section was divided into two layers representing the superficial and deep halves of the cartilage. T(2) of these sections and layers were measured. RESULTS: Femoral cartilage T(2) was the shortest (-20 degrees to 20 degrees and -10 degrees to 10 degrees , superficial and deep layers), with an increase near the magic angle (54.7 degrees ). Acetabular cartilage T(2) in both layers was shorter in the periphery than the other parts, especially at 20 degrees to 30 degrees . There were no significant differences in T(2) between right and left hips or between men and women. CONCLUSION: Topographic variation exists in hip cartilage T(2) in young, healthy adults. These findings should be taken into account when T(2) mapping is applied to patients with degenerative cartilage. J. Magn. Reson. Imaging 2007;26:165-171. (c) 2007 Wiley-Liss, Inc.
Resumo:
PURPOSE: The aim of this study was to investigate the effect of magnetization transfer on multislice T(1) and T(2) measurements of articular cartilage. MATERIALS AND METHODS: A set of phantoms with different concentrations of collagen and contrast agent (Gd-DTPA(2-)) were used for the in vitro study. A total of 20 healthy knees were used for the in vivo study. T(1) and T(2) measurements were performed using fast-spin-echo inversion-recovery (FSE-IR) sequence and multi-spin-echo (MSE) sequence, respectively, in both in vitro and in vivo studies. We investigated the difference in T(1) and T(2) values between that measured by single-slice acquisition and that measured by multislice acquisition. RESULTS: Regarding T(1) measurement, a large drop of T(1) in all slices and also a large interslice variation in T(1) were observed when multislice acquisition was used. Regarding T(2) measurement, a substantial drop of T(2) in all slices was observed; however, there was no apparent interslice variation when multislice acquisition was used. CONCLUSION: This study demonstrated that the adaptation of multislice acquisition technique for T(1) measurement using FSE-IR methodology is difficult and its use for clinical evaluation is problematic. In contrast, multislice acquisition for T(2) measurement using MSE was clinically applicable if inaccuracies caused by multislice acquisition were taken into account. J. Magn. Reson. Imaging 2007;26:109-117. (c) 2007 Wiley-Liss, Inc.
Resumo:
OBJECTIVE: To explore the role of pro-apoptotic signals following tissue injury and how these may promote a progression of further cell death. METHODS: Laser treated porcine articular cartilage disks were maintained in culture media. The collected media at various time periods (3, 6, 9, 12, 24 and 48 h), was called treated conditioned media (TCM). Non-laser treated cartilage disks were used to create control conditioned media (CCM). Each disk was subsequently maintained for 28 days and used in confocal microscopic assessment to document the progression of the damaged area. Isolated porcine chondrocytes were cultured in monolayer, and were exposed to TCM, CCM or normal culture medium (NM). As a positive inducer of apoptosis, the monolayer cells were exposed to UV radiation for 10 min and cultured in NM. Following 24 h exposure, the cells were harvested and stained with the appropriate combination of fluorescent dyes and processed via flow cytometry. RESULTS: All cultured cells exposed to TCM displayed a caspase-3 positive subpopulation, a loss of CMXRos, and with a reduced or lost NO signal. CCM exposure signals were comparable to the NM treatments with all having retained CMXRos, NO and without evidence of caspase-3 activity. UV treatment also induced a reduction in NO, but both CMXRos and caspase-3 positive, representing an earlier stage of apoptosis and suggesting that the mode of cell death via UV and TCM exposure are via different processes. The investigation of a dose (100%, 50%, 25% and 12.5%) and time (0.5, 1, 3, 9, 12 h) response to TCM exhibited that all treatments observed an increase in caspase-3 positive cells and a reduction in NO and CMXRos. CONCLUSION: The usefulness of FCM can be used in the study of cell viability and apoptosis. Such a system may be useful in the study of mechanisms of disease such as osteoarthritis, thus may be of practical use for the pharmaceutical industry for screening associated drugs.
Resumo:
BACKGROUND: The aim of this study was to investigate the biochemical properties, histological and immunohistochemical appearance, and magnetic resonance (MR) imaging findings of reparative cartilage after autologous chondrocyte implantation (ACI) for osteochondritis dissecans (OCD). METHODS: Six patients (mean age 20.2 +/- 8.8 years; 13-35 years) who underwent ACI for full-thickness cartilage defects of the femoral condyle were studied. One year after the procedure, a second-look arthroscopic operation was performed with biopsy of reparative tissue. The International Cartilage Repair Society (ICRS) visual histological assessment scale was used for histological assessment. Biopsied tissue was immunohistochemically analyzed with the use of monoclonal antihuman collagen type I and monoclonal antihuman collagen type II primary antibodies. Glycosaminoglycan (GAG) concentrations in biopsied reparative cartilage samples were measured by high performance liquid chromatography (HPLC). MR imaging was performed with T1- and T2-weighted imaging and three-dimensional spoiled gradient-recalled (3D-SPGR) MR imaging. RESULTS: Four tissue samples were graded as having a mixed morphology of hyaline and fibrocartilage while the other two were graded as fibrocartilage. Average ICRS scores for each criterion were (I) 1.0 +/- 1.5; (II) 1.7 +/- 0.5; (III) 0.6 +/- 1.0; (IV) 3.0 +/- 0.0; (V) 1.8 +/- 1.5; and (VI) 2.5 +/- 1.2. Average total score was 10.7 +/- 2.8. On immunohistochemical analysis, the matrix from deep and middle layers of reparative cartilage stained positive for type II collagen; however, the surface layer did not stain well. The average GAG concentration in reparative cartilage was 76.6 +/- 4.2 microg/mg whereas that in normal cartilage was 108 +/- 11.2 microg/mg. Common complications observed on 3D-SPGR MR imaging were hypertrophy of grafted periosteum, edema-like signal in bone marrow, and incomplete repair of subchondral bone at the surgical site. Clinically, patients had significant improvements in Lysholm scores. CONCLUSIONS: In spite of a good clinical course, reparative cartilage after ACI had less GAG concentration and was inferior to healthy hyaline cartilage in histological and immunohistochemical appearance and on MRI findings.
Resumo:
Mesenchymal stem cells (MSCs) provide an important source of pluripotent cells for musculoskeletal tissue repair. This study examined the impact of MSC implantation on cartilage healing characteristics in a large animal model. Twelve full-thickness 15-mm cartilage lesions in the femoropatellar articulations of six young mature horses were repaired by injection of a self-polymerizing autogenous fibrin vehicle containing mesenchymal stem cells, or autogenous fibrin alone in control joints. Arthroscopic second look and defect biopsy was obtained at 30 days, and all animals were euthanized 8 months after repair. Cartilage repair tissue and surrounding cartilage were assessed by histology, histochemistry, collagen type I and type II immunohistochemistry, collagen type II in situ hybridization, and matrix biochemical assays. Arthroscopic scores for MSC-implanted defects were significantly improved at the 30-day arthroscopic assessment. Biopsy showed MSC-implanted defects contained increased fibrous tissue with several defects containing predominantly type II collagen. Long-term assessment revealed repair tissue filled grafted and control lesions at 8 months, with no significant difference between stem cell-treated and control defects. Collagen type II and proteoglycan content in MSC-implanted and control defects were similar. Mesenchymal stem cell grafts improved the early healing response, but did not significantly enhance the long-term histologic appearance or biochemical composition of full-thickness cartilage lesions.
Resumo:
To evaluate a triphasic injection protocol for whole-body multidetector computed tomography (MDCT) in patients with multiple trauma. Fifty consecutive patients (41 men) were examined. Contrast medium (300 mg/mL iodine) was injected starting with 70 mL at 3 mL/s, followed by 0.1 mL/s for 8 s, and by another bolus of 75 mL at 4 mL/s. CT data acquisition started 50 s after the beginning of the first injection. Two experienced, blinded readers independently measured the density in all major arteries, veins, and parenchymatous organs. Image quality was assessed using a five-point ordinal rating scale and compared to standard injection protocols [n = 25 each for late arterial chest, portovenous abdomen, and MDCT angiography (CTA)]. With the exception of the infrarenal inferior caval vein, all blood vessels were depicted with diagnostic image quality using the multiple-trauma protocol. Arterial luminal density was slightly but significantly smaller compared to CTA (P < 0.01). Veins and parenchymatous organs were opacified significantly better compared to all other protocols (P < 0.01). Arm artifacts reduced the density of spleen and liver parenchyma significantly (P < 0.01). Similarly high image quality is achieved for arteries using the multiple-trauma protocol compared to CTA, and parenchymatous organs are depicted with better image quality compared to specialized protocols. Arm artifacts should be avoided.
Resumo:
PURPOSE: To compare the effects on heart rate (HR), on left ventricular (LV) or arterial pressures, and the general safety of a non-ionic low-osmolar contrast medium (CM) and a non-ionic iso-osmolar CM in patients undergoing cardiac angiography (CA) or peripheral intra-arterial digital subtraction angiography (IA-DSA). MATERIALS AND METHODS: Two double-blind, randomized studies were conducted in 216 patients who underwent CA (n=120) or peripheral IA-DSA (n=96). Patients referred for CA received a low-osmolar monomeric CM (iomeprol-350, n=60) or an iso-osmolar dimeric CM (iodixanol-320; n=60). HR and LV peak systolic and end-diastolic pressures were determined before and after the first injection during left and right coronary arteriography and left ventriculography. Monitoring for all types of adverse event (AE) was performed for 24 h following the procedure. t-tests were performed to compare CM for effects on HR. Patients referred for IA-DSA received iomeprol-300 (n=49) or iodixanol-320 (n=47). HR and arterial blood pressure (BP) were evaluated before and after the first 4 injections. Monitoring for AE was performed for 4 h following the procedure. Repeated-measures ANOVA was used to compare mean HR changes across the first 4 injections, whereas changes after the first injection were compared using t-tests. RESULTS: No significant differences were noted between iomeprol and iodixanol in terms of mean changes in HR during left coronary arteriography (p=0.8), right coronary arteriography (p=0.9), and left ventriculography (p=0.8). In patients undergoing IA-DSA, no differences between CM were noted for effects on mean HR after the first injection (p=0.6) or across the first 4 injections (p=0.2). No significant differences (p>0.05) were noted in terms of effects on arterial BP in either study or on LV pressures in patients undergoing CA. Non-serious AE considered possibly CM-related (primarily headache and events affecting the cardiovascular and digestive systems) were reported more frequently by patients undergoing CA and more frequently after iodixanol (14/60 [23.3%] and 2/47 [4.3%]; CA and IA-DSA, respectively) than iomeprol (10/60 [16.7%] and 1/49 [2%], respectively). CONCLUSIONS: Iomeprol and iodixanol are safe and have equally negligible effects on HR and LV pressures or arterial BP during and after selective intra-cardiac injection and peripheral IA-DSA. CLINICAL APPLICATION: Iomeprol and iodixanol are safe and equally well tolerated with regard to cardiac rhythm and clinical preference should be based on diagnostic image quality alone.
Resumo:
In dogs, degenerative joint diseases (DJD) have been shown to be associated with increased lactate dehydrogenase (LDH) activity in the synovial fluid. The goal of this study was to examine healthy and degenerative stifle joints in order to clarify the origin of LDH in synovial fluid. In order to assess the distribution of LDH, cartilage samples from healthy and degenerative knee joints were investigated by means of light and transmission electron microscopy in conjunction with immunolabeling and enzyme cytochemistry. Morphological analysis confirmed DJD. All techniques used corroborated the presence of LDH in chondrocytes and in the interterritorial matrix of healthy and degenerative stifle joints. Although enzymatic activity of LDH was clearly demonstrated in the territorial matrix by means of the tetrazolium-formazan reaction, immunolabeling for LDH was missing in this region. With respect to the distribution of LDH in the interterritorial matrix, a striking decrease from superficial to deeper layers was present in healthy dogs but was missing in affected joints. These results support the contention that LDH in synovial fluid of degenerative joints originates from cartilage. Therefore, we suggest that (1) LDH is transferred from chondrocytes to ECM in both healthy dogs and dogs with degenerative joint disease and that (2) in degenerative joints, LDH is released from chondrocytes and the ECM into synovial fluid through abrasion of cartilage as well as through enhanced diffusion as a result of increased water content and degradation of collagen.
Resumo:
Matrilins are oligomeric extracellular matrix adaptor proteins mediating interactions between collagen fibrils and other matrix constituents. All four matrilins are expressed in cartilage and mutations in the human gene encoding matrilin-3 (MATN3) are associated with different forms of chondrodysplasia. Surprisingly, however, Matn3-null as well as Matn1- and Matn2-null mice do not show an overt skeletal phenotype, suggesting a dominant negative pathomechanism for the human disorders and redundancy/compensation among the family members in the knock-out situation. Here, we show that mice lacking both matrilin-1 and matrilin-3 develop an apparently normal skeleton, but exhibit biochemical and ultrastructural abnormalities of the knee joint cartilage. At the protein level, an altered SDS-PAGE band pattern and a clear up-regulation of the homotrimeric form of matrilin-4 were evident in newborn Matn1/Matn3 and Matn1 knock-out mice, but not in Matn3-null mice. The ultrastructure of the cartilage matrix after conventional chemical fixation was grossly normal; however, electron microscopy of high pressure frozen and freeze-substituted samples, revealed two consistent observations: 1) moderately increased collagen fibril diameters throughout the epiphysis and the growth plate in both single and double mutants; and 2) increased collagen volume density in Matn1(-/-)/Matn3(-/-) and Matn3(-/-) mice. Taken together, our results demonstrate that matrilin-1 and matrilin-3 modulate collagen fibrillogenesis in cartilage and provide evidence that biochemical compensation might exist between matrilins.
Resumo:
A novel computer-assisted injection device for the delivery of highly viscous bone cements in vertebroplasty is presented. It addresses the shortcomings of manual injection systems ranging from low-pressure and poor level of control to device failure. The presented instrument is capable of generating a maximum pressure of 5000 kPa in traditional 6-ml syringes and provides an advanced control interface for precise cement delivery from outside radiation fields emitted by intraoperative imaging systems. The integrated real-time monitoring of injection parameters, such as flow-rate, volume, pressure, and viscosity, simplifies consistent documentation of interventions and establishes a basis for the identification of safe injection protocols on the longer term. Control algorithms prevent device failure due to overloading and provide means to immediately stop cement flow to avoid leakage into adjacent tissues.
Resumo:
The effect of varying injection rates of a saline chaser on aortic enhancement in computed tomography (CT) angiography was determined. Single-level, dynamic CT images of a physiological flow phantom were acquired between 0 and 50 s after initiation of contrast medium injection. Four injection protocols were applied with identical contrast medium administration (150 ml injected at 5 ml/s). For baseline protocol A, no saline chaser was applied. For protocols B, C, and D, 50 ml of saline was injected at 2.5 ml/s, 5 ml/s, and 10 ml/s, respectively. Injecting the saline chaser at twice the rate as the contrast medium yielded significantly higher peak aortic enhancement values than injecting the saline at half or at the same rate as the contrast medium (P < 0.05). Average peak aortic enhancement (HU) measured 214, 214, 218, and 226 for protocols A, B, C, and D, respectively. The slower the saline-chaser injection rate, the longer the duration of 90% peak enhancement: 13.6, 12.2, and 11.7 s for protocols B, C, and D, respectively (P > 0.05). In CT angiography, saline chaser injected at twice the rate as the contrast medium leads to increased peak aortic enhancement and saline chaser injected at half the rate tends towards prolonging peak aortic enhancement plateau.
Resumo:
In rheumatology and joint research, as in other fields, a purely descriptional appqoach to morphology cannot satisfy the exactions of modern clinical medicine. Investigators now appreciate the need to gauge pathological changes and their response to treatment by quantifying susceptible structural parameters. But the desired information respecting three-dimensional structures must be gleaned from either actual or virtual two-dimensional sections through the tissue. This information can be obtained only if the laws governing stereology are respected. In this chapter, the stereological principles that must be applied, and the practical methods that have been devised, to yield unbiased estimates of the most commonly determined structural parameters, namely, volume, surface area and number, are summarized.