72 resultados para Biology|Cellular biology
Resumo:
The regulation of microtubule dynamics is attributed to microtubule-associated proteins that bind to the microtubule outer surface, but little is known about cellular components that may associate with the internal side of microtubules. We used cryoelectron tomography to investigate in a quantitative manner the three dimensional structure of microtubules in intact mammalian cells. We show that the lumen of microtubules in this native state is filled with discrete, globular particles with a diameter of 7 nm and spacings between 8 and 20 nm in neuronal cells. Cross-sectional views of microtubules confirm the presence of luminal material in vitreous sections of brain tissue. Most of the luminal particles had connections to the microtubule wall, as revealed in tomograms. A higher accumulation of particles was seen near the retracting plus ends of microtubules. The luminal particles were abundant in neurons, but were also observed in other cells, such as astrocytes and stem cells.
Resumo:
Although T. brucei has to challenge tremendous environment changes, e.g. switch from the bloodstream form in mammalian hosts to the mid gut form present in tsetse flies, there is no evidence for differential regulation of RNA Pol II transcription. Instead, constitutive transcription appears to occur. This observation indicates that protein levels have to be regulated by post-transcriptional mechanisms. It has been shown that non-protein coding RNAs (ncRNAs) are crucial in regulatory networks (e.g. chromosome remodelling; RNA polymerase activity; mRNA turnover; etc.), but all of the recently discovered ncRNAs involved in translation regulation target the mRNA rather than the ribosome. This is unexpected, since the ribosome has a central role during gene expression and due to the assumption that the primordial translation system most likely received direct regulatory input from small molecules including ncRNA cofactors. In our lab, it has been discovered that ncRNAs are able to directly bind to the ribosome, therefore influencing the translation rate in Haloferax volcanii and Saccharomyces cerevisiae. In order to extend this idea of ribosome-binding ncRNAs in mammalian parasites, we want to investigate this mechanism in T. brucei. Accordingly, we performed a genomic screen for small ribosome-associated RNAs followed by functional analyses of possible candidates. With the help of this genomic screen, we found tRNAs that are alternated and tRNA halves that are differentially expressed upon nutritional stress.
Resumo:
Although T. brucei has to challenge tremendous environment changes, e.g. switch from the bloodstream form in mammalian hosts to the mid gut form present in tsetse flies, there is no evidence for differential regulation of RNA Pol II transcription. Instead, constitutive transcription appears to occur. This observation indicates that protein levels have to be regulated by post-transcriptional mechanisms. It has been shown that non-protein coding RNAs (ncRNAs) are crucial in regulatory networks (e.g. chromosome remodelling; RNA polymerase activity; mRNA turnover; etc.), but all of the recently discovered ncRNAs involved in translation regulation target the mRNA rather than the ribosome. This is unexpected, since the ribosome has a central role during gene expression and due to the assumption that the primordial translation system most likely received direct regulatory input from small molecules including ncRNA cofactors. In our lab, it has been discovered that ncRNAs are able to directly bind to the ribosome, therefore influencing the translation rate in Haloferax volcanii and Saccharomyces cerevisiae. In order to extend this idea of ribosome-binding ncRNAs in mammalian parasites, we want to investigate this mechanism in T. brucei. Accordingly, we performed a genomic screen for small ribosome-associated RNAs followed by functional analyses of possible candidates. With the help of this genomic screen, we found tRNAs that are alternated and tRNA halves that are differentially expressed upon nutritional stress.
Resumo:
The prognosis from thyroid cancer subtypes in humans covers a spectrum from "cured at almost 90%" to "100% lethal." Invasive and poorly differentiated forms of thyroid cancer are among the most aggressive human cancers, and there are few effective therapeutic options. Genetically engineered mice, based on mutations observed in patients, can accurately recapitulate the human disease and its progression, providing invaluable tools for the preclinical evaluation of novel therapeutic approaches. This overview details models developed to date as well as their uses for identifying novel anticancer agents. © 2015 by John Wiley & Sons, Inc.
Resumo:
Dendritic cells (DC) have a main function in innate immunity in that they sense infections and environmental antigens at the skin and mucosal surfaces and thereby critically influence decisions about immune activation or tolerance. As professional antigen-presenting cells, they are essential for induction of adaptive immune responses. Consequently, knowledge on this cell type is required to understand the immune systems of veterinary mammals, including cattle, sheep, pigs, dogs, cats, and horses. Recent ontogenic studies define bona fide DC as an independent lineage of hematopoietic cells originating from a common precursor. Distinct transcription factors control the development into the two subsets of classical DC and plasmacytoid DC. These DC subsets express a distinguishable transcriptome, which differs from that of monocyte-derived DC. Using a comparative approach based on phenotype and function, this review attempts to classify DC of veterinary mammals and to describe important knowledge gaps.
Resumo:
Advanced-stage prostate cancer (PCa) patients are often diagnosed with bone metastases. Bone metastases remain incurable and therapies are palliative. PCa cells prevalently cause osteoblastic lesions, characterized by an excess of bone formation. The prevailing concept indicates that PCa cancer cell secrete an excess of paracrine factors stimulating osteoblasts directly or indirectly, thereby leading to an excess of bone formation. The exact mechanisms by which bone formation stimulates PCa cell growth are mostly elusive. In this review, the mechanisms of PCa cancer cell osteotropism, the cancer cell-induced response within the bone marrow/bone stroma, and therapeutic stromal targets will be summarized.
Resumo:
The perforation of the plasmalemma by pore-forming toxins causes an influx of Ca(2+) and an efflux of cytoplasmic constituents. In order to ensure survival, the cell needs to identify, plug and remove lesions from its membrane. Quarantined by membrane folds and isolated by membrane fusion, the pores are removed from the plasmalemma and expelled into the extracellular space. Outward vesiculation and microparticle shedding seem to be the strategies of choice to eliminate toxin-perforated membrane regions from the plasmalemma of host cells. Depending on the cell type and the nature of injury, the membrane lesion can also be taken up by endocytosis and degraded internally. Host cells make excellent use of an initial, moderate rise in intracellular [Ca(2+)], which triggers containment of the toxin-inflicted damage and resealing of the damaged plasmalemma. Additional Ca(2+)-dependent defensive cellular actions range from the release of effector molecules in order to warn neighbouring cells, to the activation of caspases for the initiation of apoptosis in order to eliminate heavily damaged, dysregulated cells. Injury to the plasmalemma by bacterial toxins can be prevented by the early sequestration of bacterial toxins. Artificial liposomes can act as a decoy system preferentially binding and neutralizing bacterial toxins.