106 resultados para BRAIN ENDOTHELIAL-CELLS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The migration of polymorphonuclear granulocytes (PMN) into the brain parenchyma and release of their abundant proteases are considered the main causes of neuronal cell death and reperfusion injury following ischemia. Yet, therapies targeting PMN egress have been largely ineffective. To address this discrepancy we investigated the temporo-spatial localization of PMNs early after transient ischemia in a murine transient middle cerebral artery occlusion (tMCAO) model and human stroke specimens. Using specific markers that distinguish PMN (Ly6G) from monocytes/macrophages (Ly6C) and that define the cellular and basement membrane boundaries of the neurovascular unit (NVU), histology and confocal microscopy revealed that virtually no PMNs entered the infarcted CNS parenchyma. Regardless of tMCAO duration, PMNs were mainly restricted to luminal surfaces or perivascular spaces of cerebral vessels. Vascular PMN accumulation showed no spatial correlation with increased vessel permeability, enhanced expression of endothelial cell adhesion molecules, platelet aggregation or release of neutrophil extracellular traps. Live cell imaging studies confirmed that oxygen and glucose deprivation followed by reoxygenation fail to induce PMN migration across a brain endothelial monolayer under flow conditions in vitro. The absence of PMN infiltration in infarcted brain tissues was corroborated in 25 human stroke specimens collected at early time points after infarction. Our observations identify the NVU rather than the brain parenchyma as the site of PMN action after CNS ischemia and suggest reappraisal of targets for therapies to reduce reperfusion injury after stroke.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aldosterone levels are markedly elevated during normal pregnancy but fall even though volume contracts when preeclampsia occurs. The level of aldosterone in either condition cannot be explained solely by the activity of the renin-angiotensin II system. In normal gestation, vascular endothelial growth factor (VEGF) is thought to maintain vascular health, but its role in adrenal hormone production is unknown. We hypothesized that the role of VEGF in the adrenal gland is to maintain vascular health and regulate aldosterone production. Here, we demonstrate that supernatant of endothelial cells grown in the presence of VEGF enhanced aldosterone synthase activity in human adrenocortical cells. VEGF either alone or combined with angiotensin II increased aldosterone production in adrenal cells. These data suggest that endothelial cell-dependent and independent activation of aldosterone is regulated by VEGF. In contrast to angiotensin II, VEGF did not upregulate the steroidogenic acute regulatory protein. Consistent with this observation, angiotensin II stimulated both aldosterone and cortisol synthesis from progesterone, whereas VEGF stimulated selectively aldosterone production. In rats, overexpression of soluble fms-like tyrosine kinase-1, an endogenous VEGF inhibitor, led to adrenocortical capillary rarefaction and fall in aldosterone concentrations that correlated inversely with soluble fms-like tyrosine kinase-1 levels. These findings may explain why aldosterone increases so markedly during normal gestation and why preeclampsia, a condition characterized by high soluble fms-like tyrosine kinase-1, is associated with inappropriately low aldosterone levels in spite of relatively lower plasma volumes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Allelic variants of the human P-glycoprotein encoding gene MDR1 (ABCB1) are discussed to be associated with different clinical conditions including pharmacoresistance of epilepsy. However, conflicting data have been reported with regard to the functional relevance of MDR1 allelic variants for the response to antiepileptic drugs. To our knowledge, it is not known whether functionally relevant genetic polymorphisms also occur in the two genes (Mdr1a/Abcb1a, Mdr1b/Abcb1b) coding for P-glycoprotein in the brain of rodents. Therefore, we have started to search for polymorphisms in the Mdr1a gene, which governs the expression of P-glycoprotein in brain capillary endothelial cells in rats. In the kindling model of temporal lobe epilepsy, subgroups of phenytoin-sensitive and phenytoin-resistant rats were selected in repeated drug trials. Sequencing of the Mdr1a gene coding sequence in the subgroups revealed no general differences between drug-resistant and drug-sensitive rats of the Wistar outbred strain. A comparison between different inbred and outbred rat strains also gave no evidence for polymorphisms in the Mdr1a coding sequence. However, in exon-flanking intron sequences, four genetic variants were identified by comparison between these rats strains. In conclusion, the finding that Wistar rats vary in their response to phenytoin, while having the same genetic background, argues against a major impact of Mdr1a genetics on pharmacosensitivity to antiepileptic drugs in the amygdala kindling model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endothelial dysfunction precedes hypertension and atherosclerosis and predicts cardiac allograft vasculopathy and death in heart transplant recipients. Endothelial overproduction of reactive oxygen species, such as superoxide anions produced by NAD(P)H oxidase, induces endothelial dysfunction. Because immunosuppressive drugs have been associated with increased reactive oxygen species production and endothelial dysfunction, we sought to elucidate the underlying mechanisms. Reactive oxygen species, release of superoxide anions, and NAD(P)H oxidase activity were studied in human umbilical vein endothelial cells and in polymorphonuclear neutrophils. Gp91ds-tat was used to specifically block NAD(P)H oxidase. Transcriptional activation of different subunits of NAD(P)H oxidase was assessed by real-time RT-PCR. Rac1 subunit translocation and activation were studied by membrane fractionation and pull-down assays. Calcineurin inhibitors significantly increased endothelial superoxide anions production because of NAD(P)H oxidase, whereas mycophenolate acid (MPA) blocked it. MPA also attenuated the respiratory burst induced by neutrophil NAD(P)H oxidase. Because transcriptional activation of NAD(P)H oxidase was not affected, but addition of guanosine restored endothelial superoxide anions formation after MPA treatment, we speculate that the inhibitory effect of MPA was mediated by depletion of cellular guanosine triphosphate content. This prevented activation of Rac1 and, thus, of endothelial NAD(P)H oxidase. Because all heart transplant recipients are at risk for cardiac allograft vasculopathy development, these differential effects of immunosuppressants on endothelial oxidative stress should be considered in the choice of immunosuppressive drugs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

VE-PTP, a receptor-type phosphotyrosine phosphatase, associates with the tyrosine kinase receptor Tie-2 and VE-cadherin and enhances the adhesive function of the latter. Here, VE-PTP was found to be restricted to endothelial cells, with a preference for arterial endothelium. Mutant mice expressing a truncated, secreted form of VE-PTP lacking the cytoplasmic and transmembrane domains and the most membrane-proximal extracellular fibronectin type III repeat, showed severe vascular malformations causing lethality at 10 days of gestation. Although blood vessels were initially formed, the intraembryonic vascular system soon deteriorated. Blood vessels in the yolk sac developed into dramatically enlarged cavities. In explant cultures of mutant allantoides, endothelial cells were found next to vessel structures growing as cell layers. No signs for enhanced endothelial apoptosis or proliferation were observed. Thus, the activity of VE-PTP is not required for the initial formation of blood vessels, yet it is essential for their maintenance and remodeling.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sphingosine 1-phosphate (S1P) is a potent mitogenic signal generated from sphingosine by the action of sphingosine kinases (SKs). In this study, we show that in the human arterial endothelial cell line EA.hy 926 histamine induces a time-dependent upregulation of the SK-1 mRNA and protein expression which is followed by increased SK-1 activity. A similar upregulation of SK-1 is also observed with the direct protein kinase C activator 12-O-tetradecanoylphorbol-13-acetate (TPA). In contrast, SK-2 activity is not affected by neither histamine nor TPA. The increased SK-1 protein expression is due to stimulated de novo synthesis since cycloheximide inhibited the delayed SK-1 protein upregulation. Moreover, the increased SK-1 mRNA expression results from an increased promoter activation by histamine and TPA. In mechanistic terms, the transcriptional upregulation of SK-1 is dependent on PKC and the extracellular signal-regulated protein kinase (ERK) cascade since staurosporine and the MEK inhibitor U0126 abolish the TPA-induced SK-1 induction. Furthermore, the histamine effect is abolished by the H1-receptor antagonist diphenhydramine, but not by the H2-receptor antagonist cimetidine. Parallel to the induction of SK-1, histamine and TPA stimulate an increased migration of endothelial cells, which is prevented by depletion of the SK-1 by small interfering RNA (siRNA). To appoint this specific cell response to a specific PKC isoenzyme, siRNA of PKC-alpha, -delta, and -epsilon were used to selectively downregulate the respective isoforms. Interestingly, only depletion of PKC-alpha leads to a complete loss of TPA- and histamine-triggered SK-1 induction and cell migration. In summary, these data show that PKC-alpha activation in endothelial cells by histamine-activated H1-receptors, or by direct PKC activators leads to a sustained upregulation of the SK-1 protein expression and activity which, in turn, is critically involved in the mechanism of endothelial cell migration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: We wished to investigate the toxicity of four immunosuppressant and antimetabolic drugs, which are known to influence postoperative wound healing, on three different human ocular cell lines. METHODS: Acute toxicity to cyclosporin A, azathioprine, mitomicyn C and daunorubicin was assessed in Chang cells by monitoring their uptake of propidium iodide during a 3-h period. Chronic toxicity was assessed by monitoring the proliferation and viability of subconfluent cultures of Chang cells, human corneal endothelial cells (HCECs) and retinal pigmented epithelial (RPE) cells after continuous exposure to the drugs for 7 days. RESULTS: Acute toxicity testing revealed no obvious effects. However, the chronic toxicity tests disclosed a narrow concentration range over which cell proliferation decreased dramatically but calcein metabolism was sustained. Although the three lines reacted similarly to each agent, HCECs were the most vulnerable to daunorubicin and mitomycin. At a daunorubicin concentration of 0.05 microg/ml, a 75% decrease in calcein metabolism (P < 0.001) and a > or = 95% cell loss (P < 0.001) were observed. At a mitomycin concentration of 0.01 mug/ml, cell density decreased by 61% (P < 0.001) without a change in calcein metabolism, but at 0.1 microg/ml, the latter parameter decreased to 12% (P = 0.00014). At this concentration the proliferation of Chang and RPE cells decreased by more than 50%, whilst calcein metabolism was largely sustained. Cyclosporin inhibited cell proliferation moderately at lower concentrations (< 5 microg/ml; P=0.05) and substantially at higher ones, with a corresponding decline in calcein metabolism. Azathioprine induced a profound decrease in both parameters at concentrations above 5 microg/ml. CONCLUSION: Daunorubicin, cyclosporin and azathioprine could be used to inhibit excessive intraocular scarring after glaucoma and vitreoretinal surgery without overly reducing cell viability. The attributes of immunosuppressants lie in their combined antiproliferative and immunomodulatory effects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Desferrioxamine inhibits cortical necrosis in neonatal rats with experimental pneumococcal meningitis, suggesting that iron-induced oxidative damage might be responsible for neuronal damage. We therefore examined the spatial and temporal profile of changes in cortical iron and iron homeostatic proteins during pneumococcal meningitis. Infection was associated with a steady and global increase of non-haem iron in the cortex, particularly in neuronal cell bodies of layer II and V, and in capillary endothelial cells. The non-haem iron increase was associated with induction of haem oxygenase (HO)-1 in neurones, microglia and capillary endothelial cells, whereas HO-2 levels remained unchanged, suggesting that the non-haem iron increase might be the result of HO-1-mediated haem degradation. Indeed, treatment with the haem oxygenase inhibitor tin protoporphyrin (which completely blocked the accumulation of bilirubin detected in HO-1-positive cells) completely prevented the infection-associated non-haem iron increase. The same cells also displayed markedly increased ferritin staining, the increase of which occurred independently of HO activity. At the same time, no increase in DNA/RNA oxidation was observed in infected animals (as assessed by in situ detection of 8-hydroxy[deoxy]guanosine), strongly suggesting that ferritin up-regulation protected the brain from iron-induced oxidative damage. Thus, although pneumococcal meningitis leads to an increase of cortical non-haem iron, protective mechanisms up-regulated in parallel prevent iron-induced oxidative damage. Cortical damage does not appear to be a direct consequence of increased iron, therefore.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

N-acetylcysteine (NAC) is neuroprotective in animal models of acute brain injury such as caused by bacterial meningitis. However, the mechanism(s) by which NAC exerts neuroprotection is unclear. Gene expression of endothelin-1 (ET-1), which contributes to cerebral blood flow decline in acute brain injury, is partially regulated by reactive oxygen species, and thus a potential target of NAC. We therefore examined the effect of NAC on tumor necrosis factor (TNF)-alpha-induced ET-1 production in cerebrovascular endothelial cells. NAC dose dependently inhibited TNF-alpha-induced preproET-1 mRNA upregulation and ET-1 protein secretion, while upregulation of inducible nitric oxide synthase (iNOS) was unaffected. Intriguingly, NAC had no effect on the initial activation (i.e., IkappaB degradation, nuclear p65 translocation, and Ser536 phosphorylation) of NF-kappaB by TNF-alpha. However, transient inhibition of NF-kappaB DNA binding suggested that NAC may inhibit ET-1 upregulation by inhibiting (a) parallel pathway(s) necessary for full transcriptional activation of NF-kappaB-mediated ET-1 gene expression. Similar to NAC, the MEK1/2 inhibitor U0126, the p38 inhibitor SB203580, and the protein kinase inhibitor H-89 selectively inhibited ET-1 upregulation without affecting nuclear p65 translocation, suggesting that NAC inhibits ET-1 upregulation via inhibition of mitogen- and stress-activated protein kinase (MSK). Supporting this notion, cotreatment with NAC inhibited the TNF-alpha-induced rise in MSK1 and MSK2 kinase activity, while siRNA knock-down experiments showed that MSK2 is the predominant isoform involved in TNF-alpha-induced ET-1 upregulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES. The presence of circulating hematopoietic progenitor cells in patients with myeloproliferative diseases (MPD) has been described. However, the exact nature of such progenitor cells has not been specified until now. The aim of this work was to investigate the presence of endothelial precursor cells in the blood of patients with MPD and to assess the role of the endothelial cell lineage in the pathophysiology of this disease. DESIGN AND METHODS. Endothelial progenitor cell marker expression (CD34, prominin (CD133), kinase insert domain receptor (KDR) or vascular endothelial growth factor receptor 2 (VEGFR2), and von Willebrand factor) was assessed in the blood of 53 patients with MPD by quantitative polymerase chain reaction. Clonogenic stem cell assays were performed with progenitor cells and monocytes to assess differentiation towards the endothelial cell lineage. The patients' were divided according to whether they had essential thrombocythemia (ET, n=17), polycythemia vera (PV, n=21) or chronic idiopathic myelofibrosis (CIMF, n=15) and their data compared with data from normal controls (n=16) and patients with secondary thrombo- or erythrocytosis (n=17). RESULTS. Trafficking of CD34-positive cells was increased above the physiological level in 4/17 patients with ET, 5/21 patients with PV and 13/15 patients with CIMF. A subset of patients with CIMF co-expressed the markers CD34, prominin (CD133) and KDR, suggesting the presence of endothelial precursors among the circulating progenitor cells. Clonogenic stem cell assays confirmed differentiation towards both the hematopoietic and the endothelial cell lineage in 5/10 patients with CIMF. Furthermore, the molecular markers trisomy 8 and JAK2 V617F were found in the grown endothelial cells of patients positive for trisomy 8 or JAK2 V617F in the peripheral blood, confirming the common clonal origin of both hematopoietic and endothelial cell lineages. INTERPRETATION AND CONCLUSIONS. Endothelial precursor cells are increased in the blood of a subset of patients with CIMF, and peripheral endothelial cells bear the same molecular markers as hematopoietic cells, suggesting a primary role of pathological endothelial cells in this disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Consistent with findings of Wnt pathway members involved in vascular cells, a role for Wnt/Frizzled signaling has recently emerged in vascular cell development. Among the few Wnt family members implicated in vessel formation in adult, Wnt7b and Frizzled 4 have been shown as involved in vessel formation in the lung and in the retina, respectively. Our previous work has shown a role for secreted Frizzled-related protein-1 (sFRP-1), a proposed Wnt signaling inhibitor, in neovascularization after an ischemic event and demonstrated its role as a potent angiogenic factor. However the mechanisms involved have not been investigated. Here, we show that sFRP-1 treatment increases endothelial cell spreading on extracellular matrix as revealed by actin stress fiber reorganization in an integrin-dependent manner. We demonstrate that sFRP-1 can interact with Wnt receptors Frizzled 4 and 7 on endothelial cells to transduce downstream to cellular machineries requiring Rac-1 activity in cooperation with GSK-3beta. sFRP-1 overexpression in endothelium specifically reversed the inactivation of GSK-3 beta and increased neovascularization in ischemia-induced angiogenesis in mouse hindlimb. This study illustrates a regulated pathway by sFRP-1 involving GSK-3beta and Rac-1 in endothelial cell cytoskeletal reorganization and in neovessel formation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In multiple sclerosis and in its animal model experimental autoimmune encephalomyelitis (EAE), inflammatory cells migrate across the endothelial blood-brain barrier (BBB) and gain access to the CNS. It is well-established that alpha4 integrins are actively involved in leukocyte recruitment across the BBB during EAE. In contrast, the role of endothelial E- and P-selectin in this process has been a controversial issue. In this study, we demonstrate that P-selectin protein can be detected in meningeal blood vessel endothelial cells in healthy SJL and C57BL/6 mice and on rare parenchymal CNS blood vessels in C57BL/6, but not SJL, mice. During EAE, expression of P-selectin but not E-selectin was found up-regulated on inflamed CNS microvessels surrounded by inflammatory infiltrates irrespective of their meningeal or parenchymal localization with a more prominent immunostaining detected in C57BL/6 as compared with SJL mice. P-selectin immunostaining could be localized to CNS endothelial cells and to CD41-positive platelets adhering to the vessel wall. Despite the presence of P-selectin in wild-type mice, E/P-selectin-deficient SJL and C57BL/6 mice developed clinical EAE indistinguishable from wild-type mice. Absence of E- and P-selectin did neither influence the activation of myelin-specific T cells nor the composition of the cellular infiltrates in the CNS during EAE. Finally, endothelial-specific tetracycline-inducible expression of E-selectin at the BBB in transgenic C57BL/6 mice did not alter the development of EAE. Thus, E- and P-selectin are not required for leukocyte recruitment across the BBB and the development of EAE in C57BL/6 and in SJL mice.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A critical role for Tie1, an orphan endothelial receptor, in blood vessel morphogenesis has emerged from mutant mouse studies. Moreover, it was recently demonstrated that certain angiopoietin (Ang) family members can activate Tie1. We report here that Ang1 induces Tie1 phosphorylation in endothelial cells. Tie1 phosphorylation was, however, Tie2 dependent because 1) Ang1 failed to induce Tie1 phosphorylation when Tie2 was down-regulated in endothelial cells; 2) Tie1 phosphorylation was induced in the absence of Ang1 by either a constitutively active form of Tie2 or a Tie2 agonistic antibody; 3) in HEK 293 cells Ang1 phosphorylated a form of Tie1 without kinase activity when coexpressed with Tie2, and Ang1 failed to phosphorylate Tie1 when coexpressed with kinase-defective Tie2. Ang1-mediated AKT and 42/44MAPK phosphorylation is predominantly Tie2 mediated, and Tie1 down-regulates this pathway. Finally, based on a battery of in vitro and in vivo data, we show that a main role for Tie1 is to modulate blood vessel morphogenesis by virtue of its ability to down-regulate Tie2-driven signaling and endothelial survival. Our new observations help to explain why Tie1 null embryos have increased capillary densities in several organ systems. The experiments also constitute a paradigm for how endothelial integrity is fine-tuned by the interplay between closely related receptors by a single growth factor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pericyte loss and capillary regression are characteristic for incipient diabetic retinopathy. Pericyte recruitment is involved in vessel maturation, and ligand-receptor systems contributing to pericyte recruitment are survival factors for endothelial cells in pericyte-free in vitro systems. We studied pericyte recruitment in relation to the susceptibility toward hyperoxia-induced vascular remodeling using the pericyte reporter X-LacZ mouse and the mouse model of retinopathy of prematurity (ROP). Pericytes were found in close proximity to vessels, both during formation of the superficial and the deep capillary layers. When exposure of mice to the ROP was delayed by 24 h, i.e., after the deep retinal layer had formed [at postnatal (p) day 8], preretinal neovascularizations were substantially diminished at p18. Mice with a delayed ROP exposure had 50% reduced avascular zones. Formation of the deep capillary layers at p8 was associated with a combined up-regulation of angiopoietin-1 and PDGF-B, while VEGF was almost unchanged during the transition from a susceptible to a resistant capillary network. Inhibition of Tie-2 function either by soluble Tie-2 or by a sulindac analog, an inhibitor of Tie-2 phosphorylation, resensitized retinal vessels to neovascularizations due to a reduction of the deep capillary network. Inhibition of Tie-2 function had no effect on pericyte recruitment. Our data indicate that the final maturation of the retinal vasculature and its resistance to regressive signals such as hyperoxia depend on the completion of the multilayer structure, in particular the deep capillary layers, and are independent of the coverage by pericytes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pericytes provide vascular stability and control endothelial proliferation. Pericyte loss, microaneurysms, and acellular capillaries are characteristic for the diabetic retina. Platelet-derived growth factor (PDGF)-B is involved in pericyte recruitment, and brain capillaries of mice with a genetic ablation of PDGF-B show pericyte loss and microaneurysms. We investigated the role of capillary coverage with pericytes in early diabetic retinopathy and the contribution to proliferative retinopathy using mice with a single functional allele of PDGF-B (PDGF-B(+/-) mice). As assessed by quantitative morphometry of retinal digest preparations, pericyte numbers in nondiabetic PDGF-B(+/-) mice were reduced by 30% compared with wild-type mice, together with a small but significant increase in acellular capillaries. Pericyte numbers were reduced by 40% in diabetic wild-type mice compared with nondiabetic wild-type controls. Pericyte numbers were decreased by 50% in diabetic PDGF-B(+/-) mice compared with nondiabetic wild-type littermates, and the incidence of acellular capillaries was increased 3.5-fold when compared with nondiabetic PDGF-B(+/-) mice. To investigate the effect of pericyte loss in the context of ongoing angiogenesis, we subjected mice to hypoxia-induced proliferative retinopathy. As a result, PDGF-B(+/-) mice developed twice as many new blood vessels as their wild-type littermates. We conclude that retinal capillary coverage with pericytes is crucial for the survival of endothelial cells, particularly under stress conditions such as diabetes. At high vascular endothelial growth factor levels, such as those in the retinopathy of prematurity model, pericyte deficiency leads to reduced inhibition of endothelial proliferation in vivo.