95 resultados para Absolute, The.
Resumo:
A global climatology of warm conveyor belts (WCBs) is presented for the years 1979–2010, based on trajectories calculated with Interim ECMWF Re-Analysis (ERA-Interim) data. WCB trajectories are identified as strongly ascending air parcels (600 hPa in 2 days) near extratropical cyclones. Corroborating earlier studies, WCBs are more frequent during winter than summer and they ascend preferentially in the western ocean basins between 25° and 50° latitude. Before ascending, WCB trajectories typically approach from the subtropics in summer and from more midlatitude regions in winter. Considering humidity, cloud water, and potential temperature along WCBs confirms that they experience strong condensation and integrated latent heating during the ascent (typically >20 K). Liquid and ice water contents along WCBs peak at about 700 and 550 hPa, respectively. The mean potential vorticity (PV) evolution shows typical tropospheric values near 900 hPa, followed by an increase to almost 1 potential vorticity unit (PVU) at 700 hPa, and a decrease to less than 0.5 PVU at 300 hPa. These low PV values in the upper troposphere constitute significant negative anomalies with amplitudes of 1–3 PVU, which can strongly influence the downstream flow. Considering the low-level diabatic PV production, (i) WCBs starting at low latitudes (<40°) are unlikely to attain high PV (due to weak planetary vorticity) although they exhibit the strongest latent heating, and (ii) for those ascending at higher latitudes, a strong vertical heating gradient and high absolute vorticity are both important. This study therefore provides climatological insight into the cloud diabatic formation of significant positive and negative PV anomalies in the extratropical lower and upper troposphere, respectively.
The influence of inner and heard speech in arts speech therapy on brain oxygenation and hemodynamics
Resumo:
Purpose: Artistic speech therapy is applied in anthroposophically extended medicine to treat several diseases. The aim is to understand the physiology by investigating the effect of inner and heard speech on brain hemodynamics and oxygenation and analyzing whether these changes were affected by changes in arterial carbon dioxide pressure. Methods: In 29 healthy adult volunteers changes in cerebral absolute oxyhemoglobin ([O2Hb]), deoxyhemoglobin ([HHb]), total hemoglobin ([tHb]) concentrations and tissue oxygen saturation (StO2) were measured by functional near-infrared spectroscopy (fNIRS). End-tidal CO2 (PETCO2) was assessed by capnography. Each subject performed six tasks: inner speech, heard speech from a person and heard speech from a record with each two different recitation texts: hexameter and alliteration according to a randomized crossover design. Results: Significant changes during tasks: A decrease in StO2, [O2Hb], [tHb] and PETCO2 (only for inner speech); an increase in [HHb]. There was a significant difference between hexameter and alliteration. Particularly, changes in [tHb] at the left prefrontal cortex during tasks and after them were statistically different. Furthermore we found significant relations between changes in [O2Hb], [HHb], [tHb] or StO2 and the participants’ age, the baseline PETCO2, or certain speech tasks. Conclusion: During the inner speech, hyperventilation led to a lower PETCO2 (hypocapnia). During heard speech no significant changes in PETCO2 occurred. But decreases in StO2, [O2Hb], [tHb] suggest hypocapnia also here. Hexameter and alliteration led to different changes in [tHb]. Consequently, our parameters are affected by an interplay of both PETCO2 response and task dependent functional brain activity.
Resumo:
Although accumulating evidence indicates that local intraspecific density-dependent effects are not as rare in species-rich communities as previously suspected, there are still very few detailed and systematic neighborhood analyses of species-rich communities. Here, we provide such an analysis with the overall goal of quantifying the relative importance of inter- and intraspecific interaction strength in a primary, lowland dipterocarp forest located at Danum, Sabah, Malaysia. Using data on 10 abundant overstory dipterocarp species from two 4-ha permanent plots, we evaluated the effects of neighbors on the absolute growth rate of focal trees (from 1986 to 1996) over increasing neighborhood radii (from 1 to 20 m) with multiple regressions. Only trees 10 cm to < 100 cm girth at breast height in 1986 were considered as focal trees. Among neighborhood models with one neighbor term, models including only conspecific larger trees performed best in five out of 10 species. Negative effects of conspecific larger neighbors were most apparent in large overstory species such as those of the genus Shorea. However, neighborhood models with separate terms and radii for heterospecific and conspecific neighbors accounted for more variability in absolute growth rates than did neighborhood models with one neighbor term. The conspecific term was significant for nine out of 10 species. Moreover, in five out of 10 species, trees without conspecific neighbors had significantly higher absolute growth rates than trees with conspecific neighbors. Averaged over the 10 species, trees without conspecific neighbors grew 32.4 cm(2) in basal area from 1986 to 1996, whereas trees with conspecific neighbors only grew 14.7 cm(2) in basal area, although there was no difference in initial basal area between trees in the two groups. Averaged across the six species of the genus Shorea, negative effects of conspecific larger trees were significantly stronger than for heterospecific larger neighbors. Thus, high local densities within neighborhoods of 20 m may lead to strong intraspecific negative and, hence, density-dependent, effects even in species rich communities with low overall densities at larger spatial scales. We conjecture that the strength of conspecific effects may be correlated with the degree of host specificity of ectomycorrhizae.
Resumo:
BACKGROUND Treatment of patients with paediatric acute lymphoblastic leukaemia has evolved such that the risk of late effects in survivors treated in accordance with contemporary protocols could be different from that noted in those treated decades ago. We aimed to estimate the risk of late effects in children with standard-risk acute lymphoblastic leukaemia treated with contemporary protocols. METHODS We used data from similarly treated members of the Childhood Cancer Survivor Study cohort. The Childhood Cancer Survivor Study is a multicentre, North American study of 5-year survivors of childhood cancer diagnosed between 1970 and 1986. We included cohort members if they were aged 1·0-9·9 years at the time of diagnosis of acute lymphoblastic leukaemia and had received treatment consistent with contemporary standard-risk protocols for acute lymphoblastic leukaemia. We calculated mortality rates and standardised mortality ratios, stratified by sex and survival time, after diagnosis of acute lymphoblastic leukaemia. We calculated standardised incidence ratios and absolute excess risk for subsequent neoplasms with age-specific, sex-specific, and calendar-year-specific rates from the Surveillance, Epidemiology and End Results Program. Outcomes were compared with a sibling cohort and the general US population. FINDINGS We included 556 (13%) of 4329 cohort members treated for acute lymphoblastic leukaemia. Median follow-up of the survivors from 5 years after diagnosis was 18·4 years (range 0·0-33·0). 28 (5%) of 556 participants had died (standardised mortality ratio 3·5, 95% CI 2·3-5·0). 16 (57%) deaths were due to causes other than recurrence of acute lymphoblastic leukaemia. Six (1%) survivors developed a subsequent malignant neoplasm (standardised incidence ratio 2·6, 95% CI 1·0-5·7). 107 participants (95% CI 81-193) in each group would need to be followed-up for 1 year to observe one extra chronic health disorder in the survivor group compared with the sibling group. 415 participants (376-939) in each group would need to be followed-up for 1 year to observe one extra severe, life-threatening, or fatal disorder in the group of survivors. Survivors did not differ from siblings in their educational attainment, rate of marriage, or independent living. INTERPRETATION The prevalence of adverse long-term outcomes in children treated for standard risk acute lymphoblastic leukaemia according to contemporary protocols is low, but regular care from a knowledgeable primary-care practitioner is warranted. FUNDING National Cancer Institute, American Lebanese-Syrian Associated Charities, Swiss Cancer Research.
Resumo:
Spatial scaling is an integral aspect of many spatial tasks that involve symbol-to-referent correspondences (e.g., map reading, drawing). In this study, we asked 3–6-year-olds and adults to locate objects in a two-dimensional spatial layout using information from a second spatial representation (map). We examined how scaling factor and reference features, such as the shape of the layout or the presence of landmarks, affect performance. Results showed that spatial scaling on this simple task undergoes considerable development, especially between 3 and 5 years of age. Furthermore, the youngest children showed large individual variability and profited from landmark information. Accuracy differed between scaled and un-scaled items, but not between items using different scaling factors (1:2 vs. 1:4), suggesting that participants encoded relative rather than absolute distances.
Resumo:
Tree-rings offer one of the few possibilities to empirically quantify and reconstruct forest growth dynamics over years to millennia. Contemporaneously with the growing scientific community employing tree-ring parameters, recent research has suggested that commonly applied sampling designs (i.e. how and which trees are selected for dendrochronological sampling) may introduce considerable biases in quantifications of forest responses to environmental change. To date, a systematic assessment of the consequences of sampling design on dendroecological and-climatological conclusions has not yet been performed. Here, we investigate potential biases by sampling a large population of trees and replicating diverse sampling designs. This is achieved by retroactively subsetting the population and specifically testing for biases emerging for climate reconstruction, growth response to climate variability, long-term growth trends, and quantification of forest productivity. We find that commonly applied sampling designs can impart systematic biases of varying magnitude to any type of tree-ring-based investigations, independent of the total number of samples considered. Quantifications of forest growth and productivity are particularly susceptible to biases, whereas growth responses to short-term climate variability are less affected by the choice of sampling design. The world's most frequently applied sampling design, focusing on dominant trees only, can bias absolute growth rates by up to 459% and trends in excess of 200%. Our findings challenge paradigms, where a subset of samples is typically considered to be representative for the entire population. The only two sampling strategies meeting the requirements for all types of investigations are the (i) sampling of all individuals within a fixed area; and (ii) fully randomized selection of trees. This result advertises the consistent implementation of a widely applicable sampling design to simultaneously reduce uncertainties in tree-ring-based quantifications of forest growth and increase the comparability of datasets beyond individual studies, investigators, laboratories, and geographical boundaries.
Resumo:
Results from the nuclear recoil calibration of the XENON100 dark matter detector installed underground at the Laboratori Nazionali del Gran Sasso, Italy are presented. Data from measurements with an external AmB(241)e neutron source are compared with a detailed Monte Carlo simulation which is used to extract the energy-dependent charge-yield Q(y) and relative scintillation efficiency L-eff. A very good level of absolute spectral matching is achieved in both observable signal channels-scintillation S1 and ionization S2-along with agreement in the two-dimensional particle discrimination space. The results confirm the validity of the derived signal acceptance in earlier reported dark matter searches of the XENON100 experiment.
Resumo:
Satellite remote sensing provides a powerful instrument for mapping and monitoring traces of historical settlements and infrastructure, not only in distant areas and crisis regions. It helps archaeologists to embed their findings from field surveys into the broader context of the landscape. With the start of the TanDEM-X mission, spatially explicit 3D-information is available to researchers at an unprecedented resolution worldwide. We examined different experimental TanDEM-X digital elevation models (DEM) that were processed from two different imaging modes (Stripmap/High Resolution Spotlight) using the operational alternating bistatic acquisition mode. The quality and accuracy of the experimental DEM products was compared to other available DEM products and a high precision archaeological field survey. The results indicate the potential of TanDEM-X Stripmap (SM) data for mapping surface elements at regional scale. For the alluvial plain of Cilicia, a suspected palaeochannel could be reconstructed. At the local scale, DEM products from TanDEM-X High Resolution Spotlight (HS) mode were processed at 2 m spatial resolution using a merge of two monostatic/bistatic interferograms. The absolute and relative vertical accuracy of the outcome meet the specification of high resolution elevation data (HRE) standards from the National System for Geospatial Intelligence (NSG) at the HRE20 level.
Resumo:
Since multi-site reconstructions are less affected by site-specific climatic effects and artefacts, regional palaeotemperature reconstructions based on a number of sites can provide more robust estimates of centennial- to millennial-scale temperature trends than individual, site-specific records. Furthermore, reconstructions based on multiple records are necessary for developing continuous climate records over time scales longer than covered by individual sequences. Here, we present a procedure for developing such reconstructions based on relatively short (centuries to millennia), discontinuously sampled records as are typically developed when using biotic proxies in lake sediments for temperature reconstruction. The approach includes an altitudinal correction of temperatures, an interpolation of individual records to equal time intervals, a stacking procedure for sections of the interval of interest that have the same records available, as well as a splicing procedure to link the individual stacked records into a continuous reconstruction. Variations in the final, stacked and spliced reconstruction are driven by variations in the individual records, whereas the absolute temperature values are determined by the stacked segment based on the largest number of records. With numerical simulations based on the NGRIP δ18O record, we demonstrate that the interpolation and stacking procedure provides an approximation of a smoothed palaeoclimate record if based on a sufficient number of discontinuously sampled records. Finally, we provide an example of a stacked and spliced palaeotemperature reconstruction 15000–90 calibrated 14C yr BP based on six chironomid records from the northern and central Swiss Alps and eastern France to discuss the potential and limitations of this approach.
Resumo:
During winter 2013, extremely high concentrations (i.e., 4–20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) mass concentrations (24 h samples) were found in four major cities in China including Xi'an, Beijing, Shanghai and Guangzhou. Statistical analysis of a combined data set from elemental carbon (EC), organic carbon (OC), 14C and biomass-burning marker measurements using Latin hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. Based on 14C measurements of EC fractions (six samples each city), we found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% across all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xi'an (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10 and 48 ± 9% of OC and total carbon (TC), respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8, 48 ± 18, 53 ± 4 and 65 ± 26% of non-fossil OC for Xi'an, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately to heavily polluted days according to particulate matter mass. Despite a significant increase of the absolute mass concentrations of primary emissions from both fossil and non-fossil sources during the heavily polluted events, their relative contribution to TC was even decreased, whereas the portion of SOC was consistently increased at all sites. This observation indicates that SOC was an important fraction in the increment of carbonaceous aerosols during the haze episode in China.
Resumo:
Cramér Rao Lower Bounds (CRLB) have become the standard for expression of uncertainties in quantitative MR spectroscopy. If properly interpreted as a lower threshold of the error associated with model fitting, and if the limits of its estimation are respected, CRLB are certainly a very valuable tool to give an idea of minimal uncertainties in magnetic resonance spectroscopy (MRS), although other sources of error may be larger. Unfortunately, it has also become standard practice to use relative CRLB expressed as a percentage of the presently estimated area or concentration value as unsupervised exclusion criterion for bad quality spectra. It is shown that such quality filtering with widely used threshold levels of 20% to 50% CRLB readily causes bias in the estimated mean concentrations of cohort data, leading to wrong or missed statistical findings-and if applied rigorously-to the failure of using MRS as a clinical instrument to diagnose disease characterized by low levels of metabolites. Instead, absolute CRLB in comparison to those of the normal group or CRLB in relation to normal metabolite levels may be more useful as quality criteria. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Thyroid hormones are involved in modulating the immune system in mammals. In contrast, there is no information on the role played by these hormones in the immune system of teleost fish. Here we provide initial evidence for the presence of active thyroid signaling in immune organs and cells of teleosts. We demonstrate that immune organs (head kidney and spleen) and isolated leukocytes (from head kidney and peripheral blood) of the rainbow trout (Oncorhynchus mykiss) express both thyroid receptor α (THRA) and β (THRB). Absolute mRNA levels of THRA were significantly higher than those of THRB. THRA showed higher expression in immune organs and isolated immune cells compared to the reference organ, liver, while THRB showed the opposite. In vivo exposure of trout to triiodothryronine (T3) or the anti-thyroid agent propylthiouracil (PTU) altered THR expression in immune organs and cells. Effect of T3 and PTU over the relative expression of selected marker genes of immune cell subpopulations was also studied. Treatments changed the relative expression of markers of cytotoxic, helper and total T cells (cd4, cd8a, trb), B lymphocytes (mIgM) and macrophages (csf1r). These findings suggest that the immune system of rainbow trout is responsive to thyroid hormones.
Resumo:
The Al Shomou Silicilyte Member (Athel Formation) in the South Oman Salt Basin shares many of the characteristics of a light, tight-oil (LTO) reservoir: it is a prolifi c source rock mature for light oil, it produces light oil from a very tight matrix and reservoir, and hydraulic fracking technology is required to produce the oil. What is intriguing about the Al Shomou Silicilyte, and different from other LTO reservoirs, is its position related to the Precambrian/Cambrian Boundary (PCB) and the fact that it is a ‘laminated chert‘ rather than a shale. In an integrated diagenetic study we applied microstructural analyses (SEM, BSE) combined with state-of-the-art stable isotope and trace element analysis of the silicilyte matrix and fractures. Fluid inclusion microthermometry was applied to record the salinity and minimum trapping temperatures. The microstructural investigations reveal a fi ne lamination of the silicilyte matrix with a mean lamina thickness of ca. 20 μm consisting of predominantly organic matter-rich and fi nely crystalline quartz-rich layers, respectively. Authigenic, micron-sized idiomorphic quartz crystals are the main matrix components of the silicilyte. Other diagenetic phases are pyrite, apatite, dolomite, magnesite and barite cements. Porosity values based on neutron density logs and core plug data indicate porosity in the silicilyte ranges from less than 2% to almost to 40%. The majority of the pore space in the silicilyte is related to (primary) inter-crystalline pores, with locally important oversized secondary pores. Pore casts of the silica matrix show that pores are extremely irregular in three dimensions, and are generally interconnected by a complex web or meshwork of fi ne elongate pore throats. Mercury injection capillary data are in line with the microstructural observations suggesting two populations of pore throats, with an effective average modal diameter of 0.4 μm. The acquired geochemical data support the interpretation that the primary source of the silica is the ambient seawater rather than hydrothermal or biogenic. A maximum temperature of ca. 45°C for the formation of microcrystalline quartz in the silicilyte is good evidence that the lithifi cation and crystallization of quartz occurred in the fi rst 5 Ma after deposition. Several phases of brittle fracturing and mineralization occurred in response to salt tectonics during burial. The sequences of fracture-fi lling mineral phases (dolomite - layered chalcedony – quartz – apatite - magnesite I+II - barite – halite) indicates a complex fl uid evolution after silicilyte lithifi cation. Primary, all-liquid fl uid inclusions in the fracturefi lling quartz are good evidence of growth beginning at low temperatures, i.e. ≤ 50ºC. Continuous precipitation during increasing temperature and burial is documented by primary two-phase fl uid inclusions in quartz cements that show brines at 50°C and fi rst hydrocarbons at ca. 70°C. The absolute timing of each mineral phase can be constrained based on U-Pb geochronometry, and basin modelling. Secondary fl uid inclusions in quartz, magnesite and barite indicate reactivation of the fracture system after peak burial temperature during the major cooling event, i.e. uplift, between 450 and 310 Ma. A number of fi rst-order trends in porosity and reservoir-quality distribution are observed which are strongly related to the diagenetic and fl uid history of the reservoir: the early in-situ generation of hydrocarbons and overpressure development arrests diagenesis and preserves matrix porosity. Chemical compaction by pressure dissolution in the fl ank areas could be a valid hypothesis to explain the porosity variations in the silicilitye slabs resulting in lower porosity and poorer connectivity on the fl anks of the reservoir. Most of the hydrocarbon storage and production comes from intervals characterized by Amthor et al. 114488 preserved micropores, not hydrocarbon storage in a fracture system. The absence of oil expulsion results in present-day high oil saturations. The main diagenetic modifi cations of the silicilyte occurred and were completed relatively early in its history, i.e. before 300 Ma. An instrumental factor for preserving matrix porosity is the diffi culty for a given slab to evacuate all the fl uids (water and hydrocarbons), or in other words, the very good sealing capacity of the salt embedding the slab.
Resumo:
This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb−1 of LHC proton–proton collision data taken at centre-of-mass energies of √s = 7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Z decays, the achieved calibration is typically accurate to 0.05% in most of the detector acceptance, rising to 0.2% in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1% for electrons with a transverse energy of 10 GeV, and is on average 0.3% for photons. The detector resolution is determined with a relative inaccuracy of less than 10% for electrons and photons up to 60 GeV transverse energy, rising to 40% for transverse energies above 500 GeV.
Resumo:
Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of √s = 8TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4 (stat.) +3.2 −2.9 (syst.) ±1.2 (lumi) fb for a Higgs boson of mass 125.4 GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations.