74 resultados para ATRIOVENTRICULAR BLOCK
Resumo:
The sheep is a popular animal model for human biomechanical research involving invasive surgery on the hind limb. These painful procedures can only be ethically justified with the application of adequate analgesia protocols. Regional anaesthesia as an adjunct to general anaesthesia may markedly improve well-being of these experimental animals during the postoperative period due to a higher analgesic efficacy when compared with systemic drugs, and may therefore reduce stress and consequently the severity of such studies. As a first step 14 sheep cadavers were used to establish a new technique for the peripheral blockade of the sciatic and the femoral nerves under sonographic guidance and to evaluate the success rate by determination of the colorization of both nerves after an injection of 0.5 mL of a 0.1% methylene blue solution. First, both nerves were visualized sonographically. Then, methylene blue solution was injected and subsequently the length of colorization was measured by gross anatomical dissection of the target nerves. Twenty-four sciatic nerves were identified sonographically in 12 out of 13 cadavers. In one animal, the nerve could not be ascertained unequivocally and, consequently, nerve colorization failed. Twenty femoral nerves were located by ultrasound in 10 out of 13 cadavers. In three cadavers, signs of autolysis impeded the scan. This study provides a detailed anatomical description of the localization of the sciatic and the femoral nerves and presents an effective and safe yet simple and rapid technique for performing peripheral nerve blocks with a high success rate.
Resumo:
Background Atrioventricular (AV) conduction disturbances requiring permanent pacemaker (PPM) implantation may complicate transcatheter aortic valve replacement (TAVR). Available evidence on predictors of PPM is sparse and derived from small studies. Objectives The objective of this study was to provide summary effect estimates for clinically useful predictors of PPM implantation after TAVR. Methods We performed a systematic search for studies that reported the incidence of PPM implantation after TAVR and that provided raw data for the predictors of interest. Data on study, patient, and procedural characteristics were abstracted. Crude risk ratios (RRs) and 95% confidence intervals for each predictor were calculated by use of random effects models. Stratified analyses by type of implanted valve were performed. Results We obtained data from 41 studies that included 11,210 TAVR patients, of whom 17% required PPM implantation after intervention. The rate of PPM ranged from 2% to 51% in individual studies (with a median of 28% for the Medtronic CoreValve Revalving System [MCRS] and 6% for the Edwards SAPIEN valve [ESV]). The summary estimates indicated increased risk of PPM after TAVR for men (RR: 1.23; p < 0.01); for patients with first-degree AV block (RR: 1.52; p < 0.01), left anterior hemiblock (RR: 1.62; p < 0.01), or right bundle branch block (RR: 2.89; p < 0.01) at baseline; and for patients with intraprocedural AV block (RR: 3.49; p < 0.01). These variables remained significant predictors when only patients treated with the MCRS bioprosthesis were considered. The data for ESV were limited. Unadjusted estimates indicated a 2.5-fold higher risk for PPM implantation for patients who received the MCRS than for those who received the ESV. Conclusions Male sex, baseline conduction disturbances, and intraprocedural AV block emerged as predictors of PPM implantation after TAVR. This study provides useful tools to identify high-risk patients and to guide clinical decision making before and after intervention.
Resumo:
A 13-year-old male neutered domestic shorthaired cat had repeated syncopal episodes over a 6 month period, which had variable duration and continued to increase in frequency. Intermittent ventricular asystole, due to complete heart block, and hyperthyroidism were documented. As the syncopal episodes did not respond to a 4-week medical treatment and symptoms became severe, a transvenous ventricular demand pacemaker system (VVIM) was implanted via the external jugular vein. The unipolar lead was tunneled subcutaneously and connected with the generator in a preformed ventral abdominal muscle pocket. During follow up of 18-months there were no recurrences of the syncopal episodes.
Resumo:
OBJECTIVE To describe the nerve stimulator-guided sciatic-femoral nerve block in raptors undergoing surgical treatment of pododermatitis. STUDY DESIGN Prospective clinical trial. ANIMALS Five captive raptors (Falco peregrinus) aged 6.7 ± 1.3 years. METHODS Anaesthesia was induced and maintained with isoflurane in oxygen. The sciatic-femoral nerve block was performed with 2% lidocaine (0.05 mL kg(-1) per nerve) as the sole intra-operative analgesic treatment. Intraoperative physiological variables were recorded every 10 minutes from endotracheal intubation until the end of anaesthesia. Assessment of intraoperative nociception was based on changes in physiological variables above baseline values, while evaluation of postoperative pain relied on species-specific behavioural indicators. RESULTS The sciatic-femoral nerve block was feasible in raptors and the motor responses following electrical stimulation of both nerves were consistent with those reported in mammalian species. During surgery no rescue analgesia was required. The anaesthesia plane was stable and cardiorespiratory variables did not increase significantly in response to surgical stimulation. Iatrogenic complications, namely nerve damage and local anaesthetic toxicity, did not occur. Recovery was smooth and uneventful. The duration (mean ± SD) of the analgesic effect provided by the nerve block was 130 ± 20 minutes. CONCLUSION AND CLINICAL RELEVANCE The sciatic-femoral nerve block as described in dogs and rabbits can be performed in raptors as well. Further clinical trials with a control groups are required to better investigate the analgesic efficacy and the safety of this technique in raptors.
Resumo:
This article describes the clinical applicability of a nerve stimulator–guided technique, previously described in dogs, to block the sciatic and the femoral nerves in 4 pet rabbits (Oryctolagus cuniculus) undergoing hind limb surgeries. Preanesthetic intramuscular doses of medetomidine (0.08 mg/kg), ketamine (15 mg/kg), and buprenorphine (0.03 mg/kg) were administered to the rabbit patients. The rabbits were intubated and general anesthesia was maintained using isoflurane in oxygen. The sciatic-femoral nerve block was performed with 2% lidocaine at a volume of 0.05 mL/kg/nerve. Sciatic-femoral block was feasible in rabbits, and the motoric responses following electrical stimulation of both nerves were consistent with those reported in dogs after successful nerve location. Iatrogenic complications, namely nerve damage and local anesthetic toxicity, did not occur. Based on these results, the authors conclude that the sciatic-femoral nerve block described in dogs can be safely performed in rabbits. Clinical trials are required to assess the analgesic efficacy of the combined sciatic-femoral nerve block in rabbits as a part of multimodal pain management.
Resumo:
Poly(ethylene oxide) (PEO) has long been used as an additive in toothpaste, partly because it reduces biofilm formation on teeth. It does not, however, reduce the formation of dental calculus or support the remineralization of dental enamel or dentine. The present article describes the synthesis of new block copolymers on the basis of PEO and poly(3-sulfopropyl methacrylate) blocks using atom transfer radical polymerization. The polymers have very large molecular weights (over 10(6) g/mol) and are highly water-soluble. They delay the precipitation of calcium phosphate from aqueous solution but, upon precipitation, lead to relatively monodisperse hydroxyapatite (HAP) spheres. Moreover, the polymers inhibit the bacterial colonization of human enamel by Streptococcus gordonii, a pioneer bacterium in oral biofilm formation, in vitro. The formation of well-defined HAP spheres suggests that a polymer-induced liquid precursor phase could be involved in the precipitation process. Moreover, the inhibition of bacterial adhesion suggests that the polymers could be utilized in caries prevention.
Resumo:
Altered gap junctional coupling potentiates slow conduction and arrhythmias. To better understand how heterogeneous connexin expression affects conduction at the cellular scale, we investigated conduction in tissue consisting of two cardiomyocyte populations expressing different connexin levels. Conduction was mapped using microelectrode arrays in cultured strands of foetal murine ventricular myocytes with prede fi ned contents of connexin 43 knockout (Cx43KO) cells. Corresponding computer simulations were run in randomly generated two-dimensional tissues mimicking the cellular architecture of the strands. In the cultures, the relationship between conduction velocity (CV) and Cx43KO cell content was nonlinear. CV fi rst decreased signi fi cantly when Cx43KO content was increased from 0 to 50%. When the Cx43KO content was ≥ 60%, CV became comparabletothatin100%Cx43KOstrands.Co-culturingCx43KOandwild-typecellsalsoresultedinsigni fi cantly more heterogeneous conduction patterns and in frequent conduction blocks. The simulations replicated this behaviour of conduction. For Cx43KO contents of 10 – 50%, conduction was slowed due to wavefront meandering between Cx43KO cells. For Cx43KO contents ≥ 60%, clusters of remaining wild-type cells acted as electrical loads thatimpairedconduction.ForCx43KOcontentsof40 – 60%,conductionexhibitedfractal characteristics,wasprone to block, and was more sensitive to changes in ion currents compared to homogeneous tissue. In conclusion, conduction velocity and stability behave in a nonline ar manner when cardiomyocytes expressing different connexin amounts are combined. This behaviour results from heterogeneous current-to-load relationships at the cellular level. Such behaviour is likely to be arrhythmogenic in various clinical contexts in which gap junctional coupling is heterogeneous.
Resumo:
We introduce the block numerical range Wn(L) of an operator function L with respect to a decomposition H = H1⊕. . .⊕Hn of the underlying Hilbert space. Our main results include the spectral inclusion property and estimates of the norm of the resolvent for analytic L . They generalise, and improve, the corresponding results for the numerical range (which is the case n = 1) since the block numerical range is contained in, and may be much smaller than, the usual numerical range. We show that refinements of the decomposition entail inclusions between the corresponding block numerical ranges and that the block numerical range of the operator matrix function L contains those of its principal subminors. For the special case of operator polynomials, we investigate the boundedness of Wn(L) and we prove a Perron-Frobenius type result for the block numerical radius of monic operator polynomials with coefficients that are positive in Hilbert lattice sense.
Resumo:
INTRODUCTION Mitral isthmus (MI) ablation is an effective option in patients undergoing ablation for persistent atrial fibrillation (AF). Achieving bidirectional conduction block across the MI is challenging, and predictors of MI ablation success remain incompletely understood. We sought to determine the impact of anatomical location of the ablation line on the efficacy of MI ablation. METHODS AND RESULTS A total of 40 consecutive patients (87% male; 54 ± 10 years) undergoing stepwise AF ablation were included. MI ablation was performed in sinus rhythm. MI ablation was performed from the left inferior PV to either the posterior (group 1) or the anterolateral (group 2) mitral annulus depending on randomization. The length of the MI line (measured with the 3D mapping system) and the amplitude of the EGMs at 3 positions on the MI were measured in each patient. MI block was achieved in 14/19 (74%) patients in group 1 and 15/21 (71%) patients in group 2 (P = NS). Total MI radiofrequency time (18 ± 7 min vs. 17 ± 8 min; P = NS) was similar between groups. Patients with incomplete MI block had a longer MI length (34 ± 6 mm vs. 24 ± 5 mm; P < 0.001), a higher bipolar voltage along the MI (1.75 ± 0.74 mV vs. 1.05 ± 0.69 mV; P < 0.01), and a longer history of continuous AF (19 ± 17 months vs. 10 ± 10 months; P < 0.05). In multivariate analysis, decreased length of the MI was an independent predictor of successful MI block (OR 1.5; 95% CI 1.1-2.1; P < 0.05). CONCLUSIONS Increased length but not anatomical location of the MI predicts failure to achieve bidirectional MI block during ablation of persistent AF.
Resumo:
Several tests for the comparison of different groups in the randomized complete block design exist. However, there is a lack of robust estimators for the location difference between one group and all the others on the original scale. The relative marginal effects are commonly used in this situation, but they are more difficult to interpret and use by less experienced people because of the different scale. In this paper two nonparametric estimators for the comparison of one group against the others in the randomized complete block design will be presented. Theoretical results such as asymptotic normality, consistency, translation invariance, scale preservation, unbiasedness, and median unbiasedness are derived. The finite sample behavior of these estimators is derived by simulations of different scenarios. In addition, possible confidence intervals with these estimators are discussed and their behavior derived also by simulations.