126 resultados para ANIMAL MODELS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: The objective of this study was to investigate the feasibility, outcomes, and amount of small intestinal submucosa (SIS) material needed for embolization of jugular vein (JV) in a swine and sheep model. Our hypothesis was that SIS would cause vein occlusion. MATERIALS AND METHODS: The external JVs (EJV) in swine (n = 6) and JVs in sheep (n = 6) were occluded with SIS fan-folded compressed strips. After percutaneous puncture of the peripheral portion of the EJV or JV, a TIPS set was used to exit their lumen centrally through the skin. The SIS strips were delivered into the isolated venous segment with a pull-through technique via a 10-Fr sheath. Follow-up venograms were done immediately after placement and at the time of sacrifice at 1 or 3 months. Gross examinations focused on the EJV or JV and their surrounding structures. Specimens were evaluated by histology. RESULTS: SIS strip(s) placement was successful in all cases, with immediate vein occlusion seen in 23 of 24 veins (95.8%). All EJVs treated with two strips and all JVs treated with three or four strips remained closed on 1- and 3-month follow-up venograms. Two EJVs treated with one strip and one JV treated with two strips were partially patent on venograms at 1 and 3 months. There has been one skin inflammatory reaction. Necropsies revealed excluded EJV or JV segments with SIS incorporation into the vein wall. Histology demonstrated various stages of SIS remodeling with fibrocytes, fibroblasts, endothelial cells, capillaries, and inflammatory cells. CONCLUSION: We conclude that EJV and JV ablation with SIS strips using percutaneous exit catheterization is feasible and effective in animal models. Further exploration of SIS as vein ablation material is recommended.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The continuous increase of resistant pathogens causing meningitis has limited the efficacy of standard therapeutic regimens. Due to their excellent activity in vitro and their good penetration into the cerebrospinal fluid (CSF), fluoroquinolones appear promising for the treatment of meningitis caused by gram-negative microorganisms, ie, Neisseria meningitidis and nosocomial gram-negative bacilli. The newer fluoroquinolones (moxifloxacin, gemifloxacin, gatifloxacin, and garenoxacin) have excellent activity against gram-positive microorganisms. Studies in animal models and limited clinical data indicate that they may play a future role in the treatment of pneumococcal meningitis. Analysis of pharmacodynamic parameters suggests that CSF concentrations that produce a C(peak)/minimal bactericidal concentration (MBC) ratio of at least 5 and concentrations above the MBC during the entire dosing interval are a prerequisite for maximal bactericidal activity in meningitis. Of interest, newer fluoroquinolones act synergistically with vancomycin and beta-lactam antibiotics (ceftriaxone, cefotaxime, meropenem) against penicillin-resistant pneumococci in experimental rabbit meningitis, potentially providing a new therapeutic strategy. Clinical trials are needed to further explore the usefulness of quinolones as single agents or in combination with other drugs in the therapy of pneumococcal meningitis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Morbidity and mortality associated with bacterial meningitis remain high, although antibiotic therapy has improved during recent decades. The major intracranial complications of bacterial meningitis are cerebrovascular arterial and venous involvement, brain edema, and hydrocephalus with a subsequent increase of intracranial pressure. Experiments in animal models and cell culture systems have focused on the pathogenesis and pathophysiology of bacterial meningitis in an attempt to identify the bacterial and/or host factors responsible for brain injury during the course of infection. An international workshop entitled "Bacterial Meningitis: Mechanisms of Brain Injury" was organized by the Department of Neurology at the University of Munich and was held in Eibsee, Germany, in June 1993. This conference provided a forum for the exchange of current information on bacterial meningitis, including data on the clinical spectrum of complications, the associated morphological alterations, the role of soluble inflammatory mediators (in particular cytokines) and of leukocyte-endothelial cell interactions in tissue injury, and the molecular mechanisms of neuronal injury, with potential mediators such as reactive oxygen species, reactive nitrogen species, and excitatory amino acids. It is hoped that a better understanding of the pathophysiological events that take place during bacterial meningitis will lead to the development of new therapeutic regimens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bacterial meningitis represents an infection in an area of impaired host defence. Optimal therapy of meningitis requires attaining bactericidal activity within cerebrospinal fluid (CSF). Studies in experimental animal models of meningitis suggest that maximal rates of bacterial killing in vivo and optimal cure rates are achieved when CSF antibiotic concentrations exceed the MBC of the test strain by greater than or equal to ten-fold. The results of clinical trials support this conclusion. In addition, a variable post-antibiotic effect occurs in-vivo after short periods of exposure to antimicrobial activity, thus maintaining therapeutic efficacy with intermittent dosage regimens. These basic principles of therapy are outlined in this review and serve as a basis for rational treatment regimens. For most antibiotics, the optimal dose, dosage interval, and duration of therapy for bacterial meningitis remain to be established.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT: INTRODUCTION: In transgenic animal models of sepsis, members of the Bcl-2-family of proteins regulate lymphocyte apoptosis and survival of sepsis. This study investigates the gene regulation of pro- and anti-apoptotic members of the Bcl-2-family of proteins in patients with early stage severe sepsis. METHODS: In this prospective case-control study patients were recruited from three intensive care units in a university hospital. Sixteen patients were enrolled as soon as they fulfilled the criteria of severe sepsis. Ten critically ill but non-septic patients and eleven healthy volunteers served as controls. Blood samples were immediately obtained at inclusion. To confirm the presence of accelerated apoptosis in the patient groups, caspase-3 activation and phosphatidylserine (PS) externalization in CD4+, CD8+ and CD19+ lymphocyte subsets were assessed by flow cytometry. Specific mRNA's of Bcl-2 family members were quantified from whole blood by real-time polymerase chain reaction. To test for statistical significance, Kruskal-Wallis testing with Dunn's multiple comparison test for post hoc testing was performed. RESULTS: In all lymphocyte populations caspase-3 (p<0.05) was activated, which was reflected in an increased PS externalization (p<0.05). Accordingly, lymphocyte counts were decreased in early severe sepsis. In CD4+ T-cells (p<005) and in B-cells (p<0.001) the Bcl-2 protein was decreased in severe sepsis. Gene expression of the BH3-only Bim was massively upregulated as compared to critically ill patients (p<0.001) and 51.6 fold as compared to healthy controls (p<0.05). Bid was increased 12.9 fold compared to critically ill (p<0.001). In the group of the mitochondrial apoptosis-inducers, Bak was upregulated 5.6 fold, while the expression of Bax showed no significant variations. By contrast, the pro-survival members Bcl-2 and Bcl-xl were both downregulated in severe sepsis (p<0.001, p<0.05). CONCLUSIONS: In early severe sepsis a gene expression pattern with induction of the pro-apoptotic Bcl-2 family members Bim, Bid and Bak and a downregulation of the anti-apoptotic Bcl-2 and Bcl-xl was observed in peripheral blood. This constellation may affect cellular susceptibility to apoptosis and complex immune dysfunction in sepsis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECT: Disturbed ionic and neurotransmitter homeostasis are now recognized as probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brain injury (TBI). Evidence obtained in animal models indicates that posttraumatic neuronal excitation by excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with measurements of intracranial pressure (ICP), patient outcome, and levels of dialysate glutamate and lactate, and cerebral blood flow (CBF) to determine the role of ischemia in this posttraumatic ion dysfunction. METHODS: Eighty-five patients with severe TBI (Glasgow Coma Scale Score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed using flame photometry, and dialysate glutamate and dialysate lactate levels were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients, respectively. Cerebral blood flow studies (stable xenon computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, dialysate potassium values were increased (dialysate potassium > 1.8 mM) for 3 hours or more. A mean amount of dialysate potassium greater than 2 mM throughout the entire monitoring period was associated with ICP above 30 mm Hg and fatal outcome, as were progressively rising levels of dialysate potassium. The presence of dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate (p < 0.0001) levels. Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). CONCLUSIONS: Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase in dialysate potassium, together with dialysate glutamate and lactate, supports the concept that glutamate induces ionic flux and consequently increases ICP, which the authors speculate may be due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered vasoreactivity in cerebral blood vessels caused by higher levels of potassium after trauma. Additional studies in which potassium-sensitive microelectrodes are used are needed to validate these ionic events more clearly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Disturbed ionic and neurotransmitter homeostasis are now recognized to be probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brian injury (TBI). Evidence obtained from animal models indicates that posttraumatic neuronal excitation via excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with intracranial pressure (ICP), outcome, and also with the levels of dialysate glutamate, lactate, and cerebral blood flow (CBF) so as to determine the role of ischemia in this posttraumatic ionic dysfunction. Eighty-five patients with severe TBI (Glasgow Coma Scale score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed by flame photometry, as were dialysate glutamate and dialysate lactate levels, which were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients respectively. Cerebral blood flow studies (stable Xenon--computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, potassium values were increased (dialysate potassium > 1.8 mmol). Mean dialysate potassium (> 2 mmol) was associated with ICP above 30 mm Hg and fatal outcome. Dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate levels (p < 0.0001). Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase of potassium, together with dialysate glutamate and lactate, supports the hypothesis that glutamate induces ionic flux and consequently increases ICP due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered potassium reactivity in cerebral blood vessels after trauma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most genetic diseases of the lymphohematopoietic system, including hemoglobinopathies, can now be diagnosed early in gestation. However, as yet, prenatal treatment is not available. Postnatal therapy by hematopoietic stem cell (HSC) transplantation from bone marrow, mobilized peripheral blood, or umbilical cord blood is possible for several of these diseases, in particular for the hemoglobinopathies, but is often limited by a lack of histocompatible donors, severe treatment-associated morbidity, and preexisting organ damage that developed before birth. In-utero transplantation of allogeneic HSC has been performed successfully in various animal models and recently in humans. However, the clinical success of this novel treatment is limited to diseases in which the fetus is affected by severe immunodeficiency. The lack of donor cell engraftment in nonimmunocompromised hosts is thought to be due to immunologic barriers, as well as to competitive fetal marrow population by host HSCs. Among the possible strategies to circumvent allogeneic HLA barriers, the use of gene therapy by genetically corrected autologous HSCs in the fetus is one of the most promising approaches. The recent development of strategies to overcome failure of efficient transduction of quiescent hematopoietic cells using new vector constructs and transduction protocols opens new perspectives for gene therapy in general, as well as for prenatal gene transfer in particular. The fetus might be especially susceptible for successful gene therapy approaches because of the developing, expanding hematopoietic system during gestation and the immunologic naiveté early in gestation, precluding immune reaction towards the transgene by inducing tolerance. Ethical issues, in particular regarding treatment safety, must be addressed more closely before clinical trials with fetal gene therapy in human pregnancies can be initiated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Airway access is needed for a number of experimental animal models, and the majority of animal research is based on mouse models. Anatomical conditions in mice are small, and the narrow glottic opening allows intubation only with a subtle technique. We therefore developed a microscopic endotracheal intubation method with a wire guide technique in mice anaesthetized with halothane in oxygen. The mouse is hung perpendicularly with its incisors on a thread fixed on a vertical plate. The tongue is placed with a pair of forceps between the left hand's thumb and forefinger and slightly pulled, while the neck and thorax are positioned using the third and fourth fingers. By doing so, the neck can be slightly stretched, which allows optimal visualization of the larynx and the vocal cords. To ensure a safe intubation, a fine wire guide is placed under vision between the vocal cords and advanced about 5 mm into the trachea. An intravenous 22G x 1 in. plastic or Teflon catheter is guided over this wire. In a series of 41 mice, between 21 and 38 g, the success rate for the first intubation attempt was >95%. Certainty of the judgement procedure was 100% and success rate was higher using the described method when compared with a transillumination method in a further series. The technique is safe, less invasive than tracheostomy and suitable for controlled ventilation and pulmonary substance application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fetal growth is compromised in animal models with high cortisol availability. In healthy pregnancies, the fetus is protected from high circulating cortisol levels by the placental 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), which is reduced in preeclampsia. We hypothesized increased placental cortisol availability in preeclampsia as missing link to fetal growth restriction and prematurity. Placental tissue was obtained from 39 pregnant women dichotomized normotensive (n = 16) or preeclamptic (n = 23). Placental steroid hormone metabolites were analyzed by gas chromatography-mass spectrometry. Apparent 11beta-HSD2 enzyme activity was calculated as substrate to product ratio. Estradiol and pregnandiol positively correlated with gestational age. Cortisol was virtually absent in 93.8% of controls, yet detectable in 79.3% of preeclamptic samples resulting in an odds ratio (OR) of 0.019 (95% CI 0.002-0.185) for the presence of placental cortisol. Apparent 11beta-HSD2 activity directly correlated with birth weight (R2 = 0.16; p < 0.02) and gestational age (R2 = 0.11; p < 0.04) ensuing a reduced risk of premature delivery (OR 0.12; 95% CI 0.02-0.58). We conclude that normotensive pregnancies are characterized by an almost completely inactivated placental cortisol. In line with our hypothesis, reduced 11beta-HSD2 activity in preeclampsia is unable to abolish placental cortisol, a finding clearly associated with prematurity and low birth weight.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND. The high rate of reperfusion injury in clinical lung transplantation mandates significant improvements in lung preservation. Innovations should be validated using standardized and low-cost experimental models. METHODS. The model introduced here is analyzed by comparing global lung function after varying ischemic times (2, 4, 8, 16, and 24 hours). A rat double-lung block is flush-perfused, and the main pulmonary artery and left atrium are connected to the left pulmonary artery and vein of a syngeneic recipient using a T-shaped stent. With pressure side ports and incorporated flow crystals, measurement of vascular resistance and graft oxygenation can be performed. The transplant is ventilated separately, and compliance and resistance are determined. RESULTS. The increase in the ischemic interval from 2 to 24 hours caused an increase in the alveolar arterial oxygen difference from 220 +/- 20 to 600 +/- 34 mm Hg, pulmonary vascular resistance from 198 +/- 76 to 638 +/- 212 mm Hg.mL-1.min-1, and resistance to airflow from 274 +/- 50 to 712 +/- 30 cm H2O/L H2O, and a decrease in pulmonary compliance from 0.4 +/- 0.05 to 0.12 +/- 0.06 mL/cm H2O. CONCLUSIONS. This in situ, syngeneic rat lung transplantation model offers an alternative to large animal models for verification of lung preservation solutions and for modification of donor or recipient treatment regimens.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the intestinal tract, only a single layer of epithelial cells separates innate and adaptive immune effector cells from a vast amount of antigens. Here, the immune system faces a considerable challenge in tolerating commensal flora and dietary antigens while preventing the dissemination of potential pathogens. Failure to tightly control immune reactions may result in detrimental inflammation. In this respect, 'conventional' regulatory CD4(+) T cells, including naturally occurring and adaptive CD4(+) CD25(+) Foxp3(+) T cells, Th3 and Tr1 cells, have recently been the focus of considerable attention. However, regulatory mechanisms in the intestinal mucosa are highly complex, including adaptations of nonhaematopoietic cells and innate immune cells as well as the presence of unconventional T cells with regulatory properties such as resident TCRgammadelta or TCRalphabeta CD8(+) intraepithelial lymphocytes. This review aims to summarize the currently available knowledge on conventional and unconventional regulatory T cell subsets (Tregs), with special emphasis on clinical data and the potential role or malfunctioning of Tregs in four major human gastrointestinal diseases, i.e. inflammatory bowel diseases, coeliac disease, food allergy and colorectal cancer. We conclude that the clinical data confirms some but not all of the findings derived from experimental animal models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The successful treatment of primary and secondary bone tumors in a huge number of cases remains one of the major unsolved challenges in modern medicine. Malignant primary bone tumor growth predominantly occurs in younger people, whereas older people predominantly suffer from secondary bone tumors since up to 85% of the most frequently occurring malignant solid tumors, such as lung, mammary, and prostate carcinomas, metastasize into the bone. It is well known that a tumor's course may be altered by its surrounding tissue. For this reason, reported here is the protocol for the surgical preparation of a cranial bone window in mice as well as the method to implant tumors in this bone window for further investigations of angiogenesis and other microcirculatory parameters in orthotopically growing primary or secondary bone tumors using intravital microscopy. Intravital microscopy represents an internationally accepted and sophisticated experimental method to study angiogenesis, microcirculation, and many other parameters in a wide variety of neoplastic and nonneoplastic tissues. Since most physiologic and pathophysiologic processes are active and dynamic events, one of the major strengths of chronic animal models using intravital microscopy is the possibility of monitoring the regions of interest in vivo continuously up to several weeks with high spatial and temporal resolution. In addition, after the termination of experiments, tissue samples can be excised easily and further examined by various in vitro methods such as histology, immunohistochemistry, and molecular biology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Advances in human prenatal medicine and molecular genetics have allowed the diagnosis of many genetic diseases early in gestation. In-utero transplantation of allogeneic hematopoietic stem cells (HSC) has been successfully used as a therapy in different animal models and recently also in human fetuses. Unfortunately, clinical success of this novel treatment is limited by the lack of donor cell engraftment in non-immunocompromised hosts and is thus restricted to diseases where the fetus is affected by severe immunodeficiency. Gene therapy using genetically modified autologous HSC circumvents allogeneic HLA barriers and constitutes one of the most promising new approaches to correct genetic deficits in the fetus. Recent developments of strategies to overcome failure of efficient transduction of quiescent hematopoietic cells include the use of new vector constructs and transduction protocols. These improvements open new perspectives for gene therapy in general and for prenatal gene transfer in particular. The fetus may be especially susceptible for successful gene therapy due to the immunologic naiveté of the immature hematopoietic system during gestation, precluding an immune reaction towards the transgene. Ethical issues, in particular those regarding treatment safety, must be taken into account before clinical trials with fetal gene therapy in human pregnancies can be initiated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The galactose-alpha-1,3-galactose (alphaGal) carbohydrate epitope is expressed on porcine, but not human cells, and therefore represents a major target for preformed human anti-pig natural Abs (NAb). Based on results from pig-to-primate animal models, NAb binding to porcine endothelial cells will likely induce complement activation, lysis, and hyperacute rejection in pig-to-human xenotransplantation. Human NK cells may also contribute to innate immune responses against xenografts, either by direct recognition of activating molecules on target cells or by FcgammaRIII-mediated xenogeneic Ab-dependent cellular cytotoxicity (ADCC). The present study addressed the question as to whether the lack of alphaGal protects porcine endothelial cells from NAb/complement-induced lysis, direct xenogeneic NK lysis, NAb-dependent ADCC, and adhesion of human NK cells under shear stress. Homologous recombination, panning, and limiting dilution cloning were used to generate an alphaGal-negative porcine endothelial cell line, PED2*3.51. NAb/complement-induced xenogeneic lysis of PED2*3.51 was reduced by an average of 86% compared with the alphaGal-positive phenotype. PED2*3.51 resisted NK cell-mediated ADCC with a reduction of lysis ranging from 30 to 70%. However, direct xenogeneic lysis of PED2*3.51, mediated either by freshly isolated or IL-2-activated human NK cells or the NK cell line NK92, was not reduced. Furthermore, adhesion of IL-2-activated human NK cells did not rely on alphaGal expression. In conclusion, removal of alphaGal leads to a clear reduction in complement-induced lysis and ADCC, but does not resolve adhesion of NK cells and direct anti-porcine NK cytotoxicity, indicating that alphaGal is not a dominant target for direct human NK cytotoxicity against porcine cells.