103 resultados para AMBULATORY BLOOD-PRESSURE
Resumo:
Ubiquitylation plays an important role in the control of Na⁺ homeostasis by the kidney. It is well established that the epithelial Na⁺ channel ENaC is regulated by the ubiquitin-protein ligase NEDD4-2, limiting ENaC cell surface expression and activity. Ubiquitylation can be reversed by the action of deubiquitylating enzymes (DUBs). One such DUB, USP2-45, was identified previously as an aldosterone-induced protein in the kidney and is also a circadian output gene. In heterologous expression systems, USP2-45 binds to ENaC, deubiquitylates it, and enhances channel density and activity at the cell surface. Because the role of USP2-45 in renal Na⁺ transport had not been studied in vivo, we investigated here the effect of Usp2 gene inactivation in this process. We demonstrate first that USP2-45 protein has a rhythmic expression with a peak at ZT12. Usp2-KO mice did not show any differences from wild-type littermates with respect to the diurnal control of Na⁺ or K⁺ urinary excretion and plasma levels either on a standard diet or after acute and chronic changes to low- and high-Na⁺ diets, respectively. Moreover, they had similar aldosterone levels on either a low- or high-Na⁺ diet. Blood pressure measurements using telemetry did not reveal variations compared with control mice. Usp2-KO mice did not display alterations in expression of genes involved in sodium homeostasis or the ubiquitin system, as evidenced by transcriptome analysis in the kidney. Our data suggest that USP2 does not play a primary role in the control of Na⁺ balance or blood pressure.
Resumo:
Background: Prevalence of hypertension in HIV infection is high, and information on blood pressure control in HIV-infected individuals is insufficient. We modeled blood pressure over time and the risk of cardiovascular events in hypertensive HIV-infected individuals. Methods: All patients from the Swiss HIV Cohort Study with confirmed hypertension (systolic or diastolic blood pressure above 139 or 89 mm Hg on 2 consecutive visits and presence of at least 1 additional cardiovascular risk factor) between April 1, 2000 and March 31, 2011 were included. Patients with previous cardiovascular events, already on antihypertensive drugs, and pregnant women were excluded. Change in blood pressure over time was modeled using linear mixed models with repeated measurement. Results: Hypertension was diagnosed in 2595 of 10,361 eligible patients. Of those, 869 initiated antihypertensive treatment. For patients treated for hypertension, we found a mean (95% confidence interval) decrease in systolic and diastolic blood pressure of −0.82 (−1.06 to −0.58) mm Hg and −0.89 (−1.05 to −0.73) mm Hg/yr, respectively. Factors associated with a decline in systolic blood pressure were baseline blood pressure, presence of chronic kidney disease, cardiovascular events, and the typical risk factors for cardiovascular disease. In patients with hypertension, increase in systolic blood pressure [(hazard ratio 1.18 (1.06 to 1.32) per 10 mm Hg increase], total cholesterol, smoking, age, and cumulative exposure to protease inhibitor–based and triple nucleoside regimens were associated with cardiovascular events. Conclusions: Insufficient control of hypertension was associated with increased risk of cardiovascular events indicating the need for improved management of hypertension in HIV-infected individuals.
Resumo:
Body weight (BW) and blood pressure (BP) have a close relationship, which has been accounted for by hormonal changes. No previous study has evaluated the effect of wearing an external weight vest on BP to determine whether there is a simple mechanism between BW and BP. Seventeen healthy volunteers underwent weight reduction (WR) through caloric restriction. Before and after WR, BW, body fat percentage and BP at rest and during exercise were measured. Before and after WR, exercise testing was performed twice with the random allocation of a weight vest (10 kg) during one of the tests. Linear regression was used to detect independent associations between BP and the weight vest, BW and body fat percentage. BW decreased from 89.4 ± 15.4 kg to 79.1 ± 14.0 kg following WR (P<0.001). WR led to significant decreases in BP at rest (from 130.0/85.9 mm Hg to 112.5/77.8 mm Hg, P<0.001 for systolic and diastolic BPs) and during exercise. The weight vest significantly increased BP at rest (to 136.1/90.7 mm Hg before and 125.8/84.6 mm Hg after WR) and during exercise. Linear regression analysis identified an independent association between the weight vest and BP (P=0.006 for systolic BP and P=0.009 for diastolic BP at rest). This study demonstrates that wearing an external weight vest has immediate effects on BP at rest and during exercise independent of BW or body fat. More research is needed to understand the physiological mechanisms between weight and BP.
Resumo:
BACKGROUND It is often assumed that blood pressure increases acutely after major stroke, resulting in so-called post-stroke hypertension. In view of evidence that the risks and benefits of blood pressure-lowering treatment in acute stroke might differ between patients with major ischaemic stroke and those with primary intracerebral haemorrhage, we compared acute-phase and premorbid blood pressure levels in these two disorders. METHODS In a population-based study in Oxfordshire, UK, we recruited all patients presenting with stroke between April 1, 2002, and March 31, 2012. We compared all acute-phase post-event blood pressure readings with premorbid readings from 10-year primary care records in all patients with acute major ischaemic stroke (National Institutes of Health Stroke Scale >3) versus those with acute intracerebral haemorrhage. FINDINGS Of 653 consecutive eligible patients, premorbid and acute-phase blood pressure readings were available for 636 (97%) individuals. Premorbid blood pressure (total readings 13,244) had been measured on a median of 17 separate occasions per patient (IQR 8-31). In patients with ischaemic stroke, the first acute-phase systolic blood pressure was much lower than after intracerebral haemorrhage (158·5 mm Hg [SD 30·1] vs 189·8 mm Hg [38·5], p<0·0001; for patients not on antihypertensive treatment 159·2 mm Hg [27·8] vs 193·4 mm Hg [37·4], p<0·0001), was little higher than premorbid levels (increase of 10·6 mm Hg vs 10-year mean premorbid level), and decreased only slightly during the first 24 h (mean decrease from <90 min to 24 h 13·6 mm Hg). By contrast with findings in ischaemic stroke, the mean first systolic blood pressure after intracerebral haemorrhage was substantially higher than premorbid levels (mean increase of 40·7 mm Hg, p<0·0001) and fell substantially in the first 24 h (mean decrease of 41·1 mm Hg; p=0·0007 for difference from decrease in ischaemic stroke). Mean systolic blood pressure also increased steeply in the days and weeks before intracerebral haemorrhage (regression p<0·0001) but not before ischaemic stroke. Consequently, the first acute-phase blood pressure reading after primary intracerebral haemorrhage was more likely than after ischaemic stroke to be the highest ever recorded (OR 3·4, 95% CI 2·3-5·2, p<0·0001). In patients with intracerebral haemorrhage seen within 90 min, the highest systolic blood pressure within 3 h of onset was 50 mm Hg higher, on average, than the maximum premorbid level whereas that after ischaemic stroke was 5·2 mm Hg lower (p<0·0001). INTERPRETATION Our findings suggest that systolic blood pressure is substantially raised compared with usual premorbid levels after intracerebral haemorrhage, whereas acute-phase systolic blood pressure after major ischaemic stroke is much closer to the accustomed long-term premorbid level, providing a potential explanation for why the risks and benefits of lowering blood pressure acutely after stroke might be expected to differ. FUNDING Wellcome Trust, Wolfson Foundation, UK Medical Research Council, Stroke Association, British Heart Foundation, National Institute for Health Research.
Resumo:
INTRODUCTION: The objective of this study was to evaluate the effects of two different mean arterial blood pressure (MAP) targets on needs for resuscitation, organ dysfunction, mitochondrial respiration and inflammatory response in a long-term model of fecal peritonitis. METHODS: Twenty-four anesthetized and mechanically ventilated pigs were randomly assigned (n = 8/group) to a septic control group (septic-CG) without resuscitation until death or one of two groups with resuscitation performed after 12 hours of untreated sepsis for 48 hours, targeting MAP 50-60 mmHg (low-MAP) or 75-85 mmHg (high-MAP). RESULTS: MAP at the end of resuscitation was 56 ± 13 mmHg (mean ± SD) and 76 ± 17 mmHg respectively, for low-MAP and high-MAP groups. One animal each in high- and low-MAP groups, and all animals in septic-CG died (median survival time: 21.8 hours, inter-quartile range: 16.3-27.5 hours). Norepinephrine was administered to all animals of the high-MAP group (0.38 (0.21-0.56) mcg/kg/min), and to three animals of the low-MAP group (0.00 (0.00-0.25) mcg/kg/min; P = 0.009). The high-MAP group had a more positive fluid balance (3.3 ± 1.0 mL/kg/h vs. 2.3 ± 0.7 mL/kg/h; P = 0.001). Inflammatory markers, skeletal muscle ATP content and hemodynamics other than MAP did not differ between low- and high-MAP groups. The incidence of acute kidney injury (AKI) after 12 hours of untreated sepsis was, respectively for low- and high-MAP groups, 50% (4/8) and 38% (3/8), and in the end of the study 57% (4/7) and 0% (P = 0.026). In septic-CG, maximal isolated skeletal muscle mitochondrial Complex I, State 3 respiration increased from 1357 ± 149 pmol/s/mg to 1822 ± 385 pmol/s/mg, (P = 0.020). In high- and low-MAP groups, permeabilized skeletal muscle fibers Complex IV-state 3 respiration increased during resuscitation (P = 0.003). CONCLUSIONS: The MAP targets during resuscitation did not alter the inflammatory response, nor affected skeletal muscle ATP content and mitochondrial respiration. While targeting a lower MAP was associated with increased incidence of AKI, targeting a higher MAP resulted in increased net positive fluid balance and vasopressor load during resuscitation. The long-term effects of different MAP targets need to be evaluated in further studies.
Resumo:
Definitions of shock and resuscitation endpoints traditionally focus on blood pressures and cardiac output. This carries a high risk of overemphasizing systemic hemodynamics at the cost of tissue perfusion. In line with novel shock definitions and evidence of the lack of a correlation between macro- and microcirculation in shock, we recommend that macrocirculatory resuscitation endpoints, particularly arterial and central venous pressure as well as cardiac output, be reconsidered. In this viewpoint article, we propose a three-step approach of resuscitation endpoints in shock of all origins. This approach targets only a minimum individual and context-sensitive mean arterial blood pressure (for example, 45 to 50 mm Hg) to preserve heart and brain perfusion. Further resuscitation is exclusively guided by endpoints of tissue perfusion irrespectively of the presence of arterial hypotension ('permissive hypotension'). Finally, optimization of individual tissue (for example, renal) perfusion is targeted. Prospective clinical studies are necessary to confirm the postulated benefits of targeting these resuscitation endpoints.
Resumo:
BACKGROUND AND PURPOSE Visit-to-visit variability in systolic blood pressure (SBP) is associated with an increased risk of stroke and was reduced in randomized trials by calcium channel blockers and diuretics but not by renin-angiotensin system inhibitors. However, time of day effects could not be determined. Day-to-day variability on home BP readings predicts stroke risk and potentially offers a practical method of monitoring response to variability-directed treatment. METHODS SBP mean, maximum, and variability (coefficient of variation=SD/mean) were determined in 500 consecutive transient ischemic attack or minor stroke patients on 1-month home BP monitoring (3 BPs, 3× daily). Hypertension was treated to a standard protocol. Differences in SBP variability from 3 to 10 days before to 8 to 15 days after starting or increasing calcium channel blockers/diuretics versus renin-angiotensin system inhibitors versus both were compared by general linear models, adjusted for risk factors and baseline BP. RESULTS Among 288 eligible interventions, variability in SBP was reduced after increased treatment with calcium channel blockers/diuretics versus both versus renin-angiotensin system inhibitors (-4.0 versus 6.9 versus 7.8%; P=0.015), primarily because of effects on maximum SBP (-4.6 versus -1.0 versus -1.0%; P=0.001), with no differences in effect on mean SBP. Class differences were greatest for early-morning SBP variability (3.6 versus 17.0 versus 38.3; P=0.002) and maximum (-4.8 versus -2.0 versus -0.7; P=0.001), with no effect on midmorning (P=0.29), evening (P=0.65), or diurnal variability (P=0.92). CONCLUSIONS After transient ischemic attack or minor stroke, calcium channel blockers and diuretics reduced variability and maximum home SBP, primarily because of effects on morning readings. Home BP readings enable monitoring of response to SBP variability-directed treatment in patients with recent cerebrovascular events.
Resumo:
Sodium is the most abundant extracellular cation and therefore pivotal in determining fluid balance. At the beginning of life, a positive sodium balance is needed to grow. Newborns and preterm infants tend to lose sodium via their kidneys and therefore need adequate sodium intake. Among older children and adults, however, excessive salt intake leads to volume expansion and arterial hypertension. Children who are overweight, born preterm, or small for gestational age and African American children are at increased risk of developing high blood pressure due to a high salt intake because they are more likely to be salt sensitive. In the developed world, salt intake is generally above the recommended intake also among children. Although a positive sodium balance is needed for growth during the first year of life, in older children, a sodium-poor diet seems to have the same cardiovascular protective effects as among adults. This is relevant, since: (1) a blood pressure tracking phenomenon was recognized; (2) the development of taste preferences is important during childhood; and (3) salt intake is often associated with the consumption of sugar-sweetened beverages (predisposing children to weight gain).
Resumo:
A successful pregnancy requires an accommodating environment. Salt and water availability are critical for plasma volume expansion. Any changes in sodium intake would alter aldosterone, a hormone previously described beneficial in pregnancy. To date, it remains ambiguous whether high aldosterone or high salt intake is preferable. We hypothesized that increased aldosterone is a rescue mechanism and appropriate salt availability is equally effective in maintaining a normotensive blood pressure (BP) phenotype in pregnancy. We compared normotensive pregnant women (n=31) throughout pregnancy with young healthy female individuals (n=31–62) and performed salt sensitivity testing within the first trimester. Suppression of urinary tetrahydro-aldosterone levels by salt intake as measured by gas chromatography–mass spectrometry and urinary sodium excretion corrected for creatinine, respectively, was shifted toward a higher salt intake in pregnancy (P<0.0001). In pregnancy, neither high urinary tetrahydro-aldosterone nor sodium excretion was correlated with higher BP. In contrast, in nonpregnant women, systolic BP rose with aldosterone (P<0.05). Testing the impact of salt on BP, we performed salt sensitivity testing in a final cohort of 19 pregnant and 24 nonpregnant women. On salt loading, 24-hour mean arterial pressure rose by 3.6±1.5 and dropped by –2.8±1.5 mm Hg favoring pregnant women (P<0.01; χ2=6.04; P<0.02). Our data suggest first that salt responsiveness of aldosterone is alleviated in conditions of pregnancy without causing aldosterone-induced hypertension. Second, salt seems to aid in BP lowering in pregnancy for reasons incompletely elucidated, yet involving renin suppression and potentially placental sensing mechanisms. Further research should identify susceptible individuals and clarify effector mechanisms.
Resumo:
BACKGROUND Patients requiring anticoagulation suffer from comorbidities such as hypertension. On the occasion of INR monitoring, general practitioners (GPs) have the opportunity to control for blood pressure (BP). We aimed to evaluate the impact of Vitamin-K Antagonist (VKA) monitoring by GPs on BP control in patients with hypertension. METHODS We cross-sectionally analyzed the database of the Swiss Family Medicine ICPC Research using Electronic Medical Records (FIRE) of 60 general practices in a primary care setting in Switzerland. This database includes 113,335 patients who visited their GP between 2009 and 2013. We identified patients with hypertension based on antihypertensive medication prescribed for ≥6 months. We compared patients with VKA for ≥3 months and patients without such treatment regarding BP control. We adjusted for age, sex, observation period, number of consultations and comorbidity. RESULTS We identified 4,412 patients with hypertension and blood pressure recordings in the FIRE database. Among these, 569 (12.9 %) were on Phenprocoumon (VKA) and 3,843 (87.1 %) had no anticoagulation. Mean systolic and diastolic BP was significantly lower in the VKA group (130.6 ± 14.9 vs 139.8 ± 15.8 and 76.6 ± 7.9 vs 81.3 ± 9.3 mm Hg) (p < 0.001 for both). The difference remained after adjusting for possible confounders. Systolic and diastolic BP were significantly lower in the VKA group, reaching a mean difference of -8.4 mm Hg (95 % CI -9.8 to -7.0 mm Hg) and -1.5 mm Hg (95 % CI -2.3 to -0.7 mm Hg), respectively (p < 0.001 for both). CONCLUSIONS In a large sample of hypertensive patients in Switzerland, VKA treatment was independently associated with better systolic and diastolic BP control. The observed effect could be due to better compliance with antihypertensive medication in patients treated with VKA. Therefore, we conclude to be aware of this possible benefit especially in patients with lower expected compliance and with multimorbidity.
Resumo:
Xu and colleagues evaluated the impact of increasing mean arterial blood pressure levels through norepinephrine administration on systemic hemodynamics, tissue perfusion, and sublingual microcirculation of septic shock patients with chronic hypertension. The authors concluded that, although increasing arterial blood pressure improved sublingual microcirculation parameters, no concomitant improvement in systemic tissue perfusion indicators was found. Here, we discuss why resuscitation targets may need to be individualized, taking into account the patient's baseline condition, and present directions for future research in this field.