64 resultados para 1-HYDROXYETHYL RADICAL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In intact chloroplasts isolated from mature pea leaves (Pisum sativum L.), the large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) was rapidly fragmented into several products upon illumination in the presence of 1 mM dithiothreitol (DTT). Very similar effects on LSU stability could be observed when illuminated chloroplasts were poisoned with cyanide which, like DTT, inhibits important plastid antioxidant enzymes, or when a light-dependent hydroxyl radical-producing system was added to the incubation medium. Moreover, DTT-stimulated light degradation of LSU was markedly delayed in the presence of scavengers of active oxygen species (AOS). It is therefore suggested that light degradation of LSU in the presence of DTT is mainly due to inhibition of the chloroplast antioxidant defense system and the subsequent accumulation of AOS in intact organelles. When chloroplasts were isolated from nonsenescent or senescent leaves, LSU remained very stable upon incubation without DTT, indicating that the antioxidant system was still functional in the isolated chloroplasts during leaf ageing. Our data support the notion that AOS might be important for the degradation of Rubisco in vivo under oxidative stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To determine changes in creatinine concentrations following the administration of 6% tetrastarch (hydroxyethyl starch [HES] 130/0.4) compared to crystalloids (CRYSs) in critically ill dogs. DESIGN Retrospective case series (2010-2013). SETTING University teaching hospital. ANIMALS Two hundred and one dogs admitted to the intensive care unit with initial plasma creatinine concentrations not exceeding laboratory reference intervals (52-117 μmol/L [0.6-1.3 mg/dL]) and receiving either CRYSs alone (CRYS group, n = 115) or HES with or without CRYSs (HES group, n = 86) for at least 24 hours. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Creatinine concentrations at admission to the intensive care unit (T0), and 2-13 days (T1) and 2-12 weeks (T2) after initiation of fluid therapy were analyzed. Creatinine concentrations were analyzed as absolute values and as the maximum percentage change from T0 to T1 (T1max%) and from T0 to T2 (T2max%), respectively. Creatinine concentrations were available for 192 dogs during T1 and 37 dogs during T2. The median cumulative dose of HES was 86 mL/kg (range, 12-336 mL/kg). No difference was detected between the groups for age, gender, body weight, and length of hospitalization. Outcome was significantly different between the HES (66% survived) and the CRYS (87% survived) groups (P = 0.014). No significant difference was detected between groups for creatinine concentrations at T0, T1, T2, T1max%, or T2max%. No significant difference was detected between the groups for T1max% creatinine in dogs subclassified as having systemic inflammatory response syndrome or sepsis. CONCLUSIONS HES administration in this canine population did not result in increased creatinine concentrations compared to administration of CRYSs. Further studies are needed to establish the safety of HES in critically ill dogs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spinocerebellar ataxia type 1 (SCA1), due to an unstable polyglutamine expansion within the ubiquitously expressed Ataxin-1 protein, leads to the premature degeneration of Purkinje cells (PCs), decreasing motor coordination and causing death within 10-15 years of diagnosis. Currently, there are no therapies available to slow down disease progression. As secondary cellular impairments contributing to SCA1 progression are poorly understood, here, we focused on identifying those processes by performing a PC specific proteome profiling of Sca1154Q/2Q mice at a symptomatic stage. Mass spectrometry analysis revealed prominent alterations in mitochondrial proteins. Immunohistochemical and serial block-face scanning electron microscopy analyses confirmed that PCs underwent age-dependent alterations in mitochondrial morphology. Moreover, colorimetric assays demonstrated impairment of the electron transport chain complexes (ETC) and decrease in ATPase activity. Subsequently, we examined whether the mitochondria-targeted antioxidant MitoQ could restore mitochondrial dysfunction and prevent SCA1-associated pathology in Sca1154Q/2Q mice. MitoQ treatment both presymptomatically and when symptoms were evident ameliorated mitochondrial morphology and restored the activities of the ETC complexes. Notably, MitoQ slowed down the appearance of SCA1-linked neuropathology such as lack of motor coordination as well as preventing oxidative stress-induced DNA / RNA damage and PC loss. Our work identifies a central role for mitochondria in PC degeneration in SCA1 and provides evidence for the supportive use of mitochondria-targeted therapeutics in slowing down disease progression.