102 resultados para whole corn
Resumo:
BACKGROUND: Complete investigation of thrombophilic or hemorrhagic clinical presentations is a time-, apparatus-, and cost-intensive process. Sensitive screening tests for characterizing the overall function of the hemostatic system, or defined parts of it, would be very useful. For this purpose, we are developing an electrochemical biosensor system that allows measurement of thrombin generation in whole blood as well as in plasma. METHODS: The measuring system consists of a single-use electrochemical sensor in the shape of a strip and a measuring unit connected to a personal computer, recording the electrical signal. Blood is added to a specific reagent mixture immobilized in dry form on the strip, including a coagulation activator (e.g., tissue factor or silica) and an electrogenic substrate specific to thrombin. RESULTS: Increasing thrombin concentrations gave standard curves with progressively increasing maximal current and decreasing time to reach the peak. Because the measurement was unaffected by color or turbidity, any type of blood sample could be analyzed: platelet-poor plasma, platelet-rich plasma, and whole blood. The test strips with the predried reagents were stable when stored for several months before testing. Analysis of the combined results obtained with different activators allowed discrimination between defects of the extrinsic, intrinsic, and common coagulation pathways. Activated protein C (APC) predried on the strips allowed identification of APC-resistance in plasma and whole blood samples. CONCLUSIONS: The biosensor system provides a new method for assessing thrombin generation in plasma or whole blood samples as small as 10 microL. The assay is easy to use, thus allowing it to be performed in a point-of-care setting.
Resumo:
The effect of whole-body vibration dosage on leg blood flow was investigated. Nine healthy young adult males completed a set of 14 random vibration and non-vibration exercise bouts whilst squatting on a Galileo 900 plate. Six vibration frequencies ranging from 5 to 30 Hz (5 Hz increments) were used in combination with a 2.5 mm and 4.5 mm amplitude to produce twelve 1-min vibration bouts. Subjects also completed two 1-min bouts where no vibration was applied. Systolic and diastolic diameters of the common femoral artery and blood cell velocity were measured by an echo Doppler ultrasound in a standing or rest condition prior to the bouts and during and after each bout. Repeated measures MANOVAs were used in the statistical analysis. Compared with the standing condition, the exercise bouts produced a four-fold increase in mean blood cell velocity (P<0.001) and a two-fold increase in peak blood cell velocity (P<0.001). Compared to the non-vibration bouts, frequencies of 10-30 Hz increased mean blood cell velocity by approximately 33% (P<0.01) whereas 20-30 Hz increased peak blood cell velocity by approximately 27% (P<0.01). Amplitude was additive to frequency but only achieved significance at 30 Hz (P<0.05). Compared with the standing condition, squatting alone produced significant increases in mean and peak blood cell velocity (P<0.001). The results show leg blood flow increased during the squat or non-vibration bouts and systematically increased with frequency in the vibration bouts.
Resumo:
BACKGROUND: Lodox-Statscan is a whole-body, skeletal and soft-tissue, low-dose X-ray scanner Anterior-posterior and lateral thoraco-abdominal studies are obtained in 3-5 minutes with only about one-third of the radiation required for conventional radiography. Since its approval by the Food and Drug Administration (FDA) in the USA, several trauma centers have incorporated this technology into their Advanced Trauma Life Support protocols. This review provides a brief overview of the system, and describes the authors' own experience with the system. METHODS: We performed a PubMed search to retrieve all references with 'Lodox' and 'Stat-scan' used as search terms. We furthermore used the google search engine to identify existing alternatives. To the best of our knowledge, this is the only FDA-approved device of its kind currently used in trauma. RESULTS AND CONCLUSION: The intention of our review has been to sensitize the readership that such alternative devices exist. The key message is that low dosage full body radiography may be an alternative to conventional resuscitation room radiography which is usually a prelude to CT scanning (ATLS algorithm). The combination of both is radiation intensive and therefore we consider any reduction of radiation a success. But only the future will show whether LS will survive in the face of low-dose radiation CT scanners and magnetic resonance imaging devices that may eventually completely replace conventional radiography.
Resumo:
BACKGROUND: Studying the interactions between xenoreactive antibodies, complement and coagulation factors with the endothelium in hyperacute and acute vascular rejection usually necessitates the use of in vivo models. Conventional in vitro or ex vivo systems require either serum, plasma or anti-coagulated whole blood, making analysis of coagulation-mediated effects difficult. Here a novel in vitro microcarrier-based system for the study of endothelial cell (EC) activation and damage, using non-anticoagulated whole blood is described. Once established, the model was used to study the effect of the characterized complement- and coagulation inhibitor dextran sulfate (DXS, MW 5000) for its EC protective properties in a xenotransplantation setting. METHODS: Porcine aortic endothelial cells (PAEC), grown to confluence on microcarrier beads, were incubated with non-anticoagulated whole human blood until coagulation occurred or for a maximum of 90 min. PAEC-beads were either pre- or co-incubated with DXS. Phosphate buffered saline (PBS) experiments served as controls. Fluid phase and surface activation markers for complement and coagulation were analyzed as well as binding of DXS to PAEC-beads. RESULTS: Co- as well as pre-incubation of DXS, followed by washing of the beads, significantly prolonged time to coagulation from 39 +/- 12 min (PBS control) to 74 +/- 23 and 77 +/- 20 min, respectively (P < 0.005 vs. PBS). DXS treatment attenuated surface deposition of C1q, C4b/c, C3b/c and C5b-9 without affecting IgG or IgM deposition. Endothelial integrity, expressed by positivity for von Willebrand Factor, was maintained longer with DXS treatment. Compared with PBS controls, both pre- and co-incubation with DXS significantly prolonged activated partial thromboplastin time (>300 s, P < 0.05) and reduced production of thrombin-antithrombin complexes and fibrinopeptide A. Whilst DXS co-incubation completely blocked classical pathway complement activity (CH50 test) DXS pre-incubation or PBS control experiments showed no inhibition. DXS bound to PAEC-beads as visualized using fluorescein-labeled DXS. CONCLUSIONS: This novel in vitro microcarrier model can be used to study EC damage and the complex interactions with whole blood as well as screen ''endothelial protective'' substances in a xenotransplantation setting. DXS provides EC protection in this in vitro setting, attenuating damage of ECs as seen in hyperacute xenograft rejection.
Resumo:
Virtual machines emulating hardware devices are generally implemented in low-level languages and using a low-level style for performance reasons. This trend results in largely difficult to understand, difficult to extend and unmaintainable systems. As new general techniques for virtual machines arise, it gets harder to incorporate or test these techniques because of early design and optimization decisions. In this paper we show how such decisions can be postponed to later phases by separating virtual machine implementation issues from the high-level machine-specific model. We construct compact models of whole-system VMs in a high-level language, which exclude all low-level implementation details. We use the pluggable translation toolchain PyPy to translate those models to executables. During the translation process, the toolchain reintroduces the VM implementation and optimization details for specific target platforms. As a case study we implement an executable model of a hardware gaming device. We show that our approach to VM building increases understandability, maintainability and extendability while preserving performance.
Resumo:
Virtual machines (VMs) emulating hardware devices are generally implemented in low-level languages for performance reasons. This results in unmaintainable systems that are difficult to understand. In this paper we report on our experience using the PyPy toolchain to improve the portability and reduce the complexity of whole-system VM implementations. As a case study we implement a VM prototype for a Nintendo Game Boy, called PyGirl, in which the high-level model is separated from low-level VM implementation issues. We shed light on the process of refactoring from a low-level VM implementation in Java to a high-level model in RPython. We show that our whole-system VM written with PyPy is significantly less complex than standard implementations, without substantial loss in performance.
Resumo:
Whole-body vibration exposure of locomotive engineers and the vibration attenuation of seats in 22 U.S. locomotives (built between 1959 and 2000) was studied during normal revenue service and following international measurement guidelines. Triaxial vibration measurements (duration mean 155 min, range 84-383 min) on the seat and on the floor were compared. In addition to the basic vibration evaluation (aw rms), the vector sum (av), the maximum transient vibration value (MTVV/aw), the vibration dose value (VDV/(aw T1/4)), and the vibration seat effective transmissibility factor (SEAT) were calculated. The power spectral densities are also reported. The mean basic vibration level (aw rms) was for the fore-aft axis x = 0.18 m/sec2, the lateral axis y = 0.28 m/sec2, and the vertical axis z = 0.32 m/sec2. The mean vector sum was 0.59 m/sec2 (range 0.27 to 1.44). The crest factors were generally at or above 9 in the horizontal and vertical axis. The mean MTVV/aw was 5.3 (x), 5.1 (y), and 4.8 (z), and the VDV/(aw T1/4) values ranged from 1.32 to 2.3 (x-axis), 1.33 to 1.7 (y-axis), and 1.38 to 1.86 (z-axis), generally indicating high levels of shocks. The mean seat transmissibility factor (SEAT) was 1.4 (x) and 1.2 (y) and 1 (z), demonstrating a general ineffectiveness of any of the seat suspension systems. In conclusion, these data indicate that locomotive rides are characterized by relatively high shock content (acceleration peaks) of the vibration signal in all directions. Locomotive vertical and lateral vibrations are similar, which appears to be characteristic for rail vehicles compared with many road/off-road vehicles. Tested locomotive cab seats currently in use (new or old) appear inadequate to reduce potentially harmful vibration and shocks transmitted to the seated operator, and older seats particularly lack basic ergonomic features regarding adjustability and postural support.
Resumo:
Recurrent airway obstruction (RAO), or heaves, is a naturally occurring asthma-like disease that is related to sensitisation and exposure to mouldy hay and has a familial basis with a complex mode of inheritance. A genome-wide scanning approach using two half-sibling families was taken in order to locate the chromosome regions that contribute to the inherited component of this condition in these families. Initially, a panel of 250 microsatellite markers, which were chosen as a well-spaced, polymorphic selection covering the 31 equine autosomes, was used to genotype the two half-sibling families, which comprised in total 239 Warmblood horses. Subsequently, supplementary markers were added for a total of 315 genotyped markers. Each half-sibling family is focused around a severely RAO-affected stallion, and the phenotype of each individual was assessed for RAO and related signs, namely, breathing effort at rest, breathing effort at work, coughing, and nasal discharge, using an owner-based questionnaire. Analysis using a regression method for half-sibling family structures was performed using RAO and each of the composite clinical signs separately; two chromosome regions (on ECA13 and ECA15) showed a genome-wide significant association with RAO at P < 0.05. An additional 11 chromosome regions showed a more modest association. This is the first publication that describes the mapping of genetic loci involved in RAO. Several candidate genes are located in these regions, a number of which are interleukins. These are important signalling molecules that are intricately involved in the control of the immune response and are therefore good positional candidates.
Resumo:
Background Balkan endemic nephropathy (BEN) represents a chronic progressive interstitial nephritis in striking correlation with uroepithelial tumours of the upper urinary tract. The disease has endemic distribution in the Danube river regions in several Balkan countries. DNA methylation is a primary epigenetic modification that is involved in major processes such as cancer, genomic imprinting, gene silencing, etc. The significance of CpG island methylation status in normal development, cell differentiation and gene expression is widely recognized, although still stays poorly understood. Methods We performed whole genome DNA methylation array analysis on DNA pool samples from peripheral blood from 159 affected individuals and 170 healthy individuals. This technique allowed us to determine the methylation status of 27 627 CpG islands throughout the whole genome in healthy controls and BEN patients. Thus we obtained the methylation profile of BEN patients from Bulgarian and Serbian endemic regions. Results Using specifically developed software we compared the methylation profiles of BEN patients and corresponding controls and revealed the differently methylated regions. We then compared the DMRs between all patient-control pairs to determine common changes in the epigenetic profiles. SEC61G, IL17RA, HDAC11 proved to be differently methylated throughout all patient-control pairs. The CpG islands of all 3 genes were hypomethylated compared to controls. This suggests that dysregulation of these genes involved in immunological response could be a common mechanism in BEN pathogenesis in both endemic regions and in both genders. Conclusion Our data propose a new hypothesis that immunologic dysregulation has a place in BEN etiopathogenesis. Keywords: Epigenetics; Whole genome array analysis; Balkan endemic nephropathy