73 resultados para vitamin
Resumo:
We report the case of a newborn with intractable epileptic seizures developing a paradoxical rise of seizure frequency and electroencephalogram alterations after administration of vitamin B6. We have been unable to determine the aetiology of this disorder. In a newborn presenting with drug-resistant epileptic seizures, the first therapeutic option remains the application of intravenous pyridoxine, but the physician should be aware of the risk of an increase in seizure frequency.
Resumo:
Hyperhomocysteinemia (HHCY) has been linked to fragility fractures and osteoporosis. Folate and vitamin B(12) deficiencies are among the main causes of HHCY. However, the impact of these vitamins on bone health has been poorly studied. This study analyzed the effect of folate and vitamin B(12) deficiency on bone in rats. We used two groups of rats: a control group (Co, n = 10) and a vitamin-deficient group (VitDef, n = 10). VitDef animals were fed for 12 wk with a folate- and vitamin B(12)-free diet. Co animals received an equicaloric control diet. Tissue and plasma concentrations of homocysteine (HCY), S-adenosyl-homocysteine (SAH), and S-adenosyl-methionine (SAM) were measured. Bone quality was assessed by biomechanical testing (maximum force of an axial compression test; F(max)), histomorphometry (bone area/total area; B.Ar./T.Ar.], and the measurement of biochemical bone turnover markers (osteocalcin, collagen I C-terminal cross-laps [CTX]). VitDef animals developed significant HHCY (Co versus VitDef: 6.8 +/- 2.7 versus 61.1 +/- 12.8 microM, p < 0.001) that was accompanied by a high plasma concentration of SAH (Co versus VitDef: 24.1 +/- 5.9 versus 86.4 +/- 44.3 nM, p < 0.001). However, bone tissue concentrations of HCY, SAH, and SAM were similar in the two groups. Fmax, B.Ar./T.Ar., OC, and CTX did not differ between VitDef and Co animals, indicating that bone quality was not affected. Folate and vitamin B(12) deficiency induces distinct HHCY but has no effect on bone health in otherwise healthy adult rats. The unchanged HCY metabolism in bone is the most probable explanation for the missing effect of the vitamin-free diet on bone.
Resumo:
To study the effect of fluoride on bone mineral density (BMD) in patients treated chronically with glucocorticosteroids, 15 subjects (renal grafted, n = 12; skin disease, n = 1; broncho pulmonary disorder, n = 1; Crohn's disease, n = 1) were prospectively studied in a double-blinded manner and randomly allocated either to group 1 (n = 8) receiving 13.2 mg/day fluoride given as disodium monofluorophosphate (MFP) supplemented with calcium (1,000 mg/day) and 25-hydroxyvitamin D (calcifediol) (50 micrograms/day), or to group 2 (n = 7) receiving Cas+ calcifediol alone. An additional group of 14 renal transplant patients treated chronically with glucocorticosteroids but exempt of specific therapeutic intervention for bone disease was set up as historical controls. BMD was measured by dual-energy X-ray absorptiometry (DXA, Hologic QDR 1000) performed at months 0, 6 and 12 for groups 1 and 2 (lumbar spine, total upper femur, diaphysis and epiphysis of distal tibia), or 11-31 months apart with calculation of linear yearly changes for the historical cohort. Lumbar BMD tended to rise in groups 1 and 2, and to fall in group 3, the change reaching statistical significance (p < 0.05) in group 1, thus leading to a significant difference between groups 1 and 3 (p < 0.05). At upper femur, tibial diaphysis and tibial epiphysis, no significant change in BMD occurred in any of the groups. In conclusion, lumbar BMD rises more after a mild dosis of fluoride given as MFP and combined to calcium and calcifediol than on Ca+ calcifediol alone, without changes in BMD at the upper femur or distal tibia.
Resumo:
OBJECTIVE To evaluate the effects of a 60% vitamin A deficiency (VAD) on the two postnatal stages of lung development: alveolarization and microvascular maturation. Lungs from deficient rats were compared to age-matched controls. STUDY DESIGN Starting at 3 weeks before mating, female rats were maintained under a diet lacking vitamin A. Due to the slow depletion of the vitamin A liver stores the pregnant rats carried to term and delivered pups under mild VAD conditions. Mothers and offspring were then kept under the same diet what resulted in a mean reduction of vitamin A plasma concentration of about 60% vs. controls during the whole experimental period. Pups were sacrificed on days 4, 10 and 21 and their lungs fixed and analyzed by means of a combined morphologic and morphometric investigation at light and electron microscopic levels. RESULTS During the whole experiment, body weights of VAD animals were lower than controls with a significant decrease on day 10. On days 4, 10 and 21 the pulmonary structure was in a comparable gross morphologic state in both groups. Despite this morphologic normality, quantitative alterations in some functional parameters could be detected. On day 4, lung volume and the volume and surface area of air spaces were decreased, while the arithmetic mean barrier thickness and type 2 pneumocyte volume were increased in the VAD group. On day 21, some changes were again manifest mainly consisting in an augmentation of the vascularization and a decrease in interstitial volume in deficient animals. CONCLUSIONS Mild VAD causes no gross disturbances in the postnatal phases of lung development in rats. However, a body weight-related transient retardation of lung maturation was detectable in the first postnatal week. At 3 weeks, the VAD lungs showed a more mature vascular system substantiated by an increase in volume of both capillary volume and the large non-parenchymal vessels. In view of these quantitative alterations, we suspect that mild VAD deregulates the normal phases of body and lung growth, but does not induce serious functional impairments.
Expression, purification and low-resolution structure of human vitamin C transporter SVCT1 (SLC23A1)
Resumo:
Expression and purification of human membrane proteins for structural studies represent a great challenge. This is because micro- to milligram amounts of pure isolated protein are required. To this aim, we successfully expressed the human vitamin C transporter-1 (hSVCT1; SLC23A1) in Xenopus laevis oocytes and isolated highly pure protein in microgram amounts. Recombinant hSVCT1 was functional when expressed in oocytes and glycosylated. Structural analysis of purified hSVCT1 by transmission electron microscopy and single particle analysis unveiled its shape, dimensions and low-resolution structure as well as the existence of a major monomeric and minor dimeric population. Chemical crosslinking of isolated oocyte membranes containing expressed hSVCT1 indicated similar oligomeric states of hSVCT1 in lipid bilayers. This work reports the first purification and structural analysis of a human SVCT protein and opens the way for future functional and structural studies using purified hSVCT1.
Resumo:
Patient self-management (PSM) of oral anticoagulation is under discussion, because evidence from real-life settings is missing. Using data from a nationwide, prospective cohort study in Switzerland, we assessed overall long-term efficacy and safety of PSM and examined subgroups. Data of 1140 patients (5818.9 patient-years) were analysed and no patient were lost to follow-up. Median follow-up was 4.3 years (range 0.2-12.8 years). Median age at the time of training was 54.2 years (range 18.2-85.2) and 34.6% were women. All-cause mortality was 1.4 per 100 patient-years (95% CI 1.1-1.7) with a higher rate in patients with atrial fibrillation (2.5; 1.6-3.7; p<0.001), patients>50 years of age (2.0; 1.6-2.6; p<0.001), and men (1.6; 1.2-2.1; p = 0.036). The rate of thromboembolic events was 0.4 (0.2-0.6) and independent from indications, sex and age. Major bleeding were observed in 1.1 (0.9-1.5) per 100 patient-years. Efficacy was comparable to standard care and new oral anticoagulants in a network meta-analysis. PSM of properly trained patients is effective and safe in a long-term real-life setting and robust across clinical subgroups. Adoption in various clinical settings, including those with limited access to medical care or rural areas is warranted.
Resumo:
BACKGROUND Bacterial meningitis caused by Streptococcus pneumoniae leads to death in up to 30% of patients and leaves up to half of the survivors with neurological sequelae. The inflammatory host reaction initiates the induction of the kynurenine pathway and contributes to hippocampal apoptosis, a form of brain damage that is associated with learning and memory deficits in experimental paradigms. Vitamin B6 is an enzymatic cofactor in the kynurenine pathway and may thus limit the accumulation of neurotoxic metabolites and preserve the cellular energy status. The aim of this study in a pneumococcal meningitis model was to investigate the effect of vitamin B6 on hippocampal apoptosis by histomorphology, by transcriptomics and by measurement of cellular nicotine amide adenine dinucleotide content. METHODS AND RESULTS Eleven day old Wistar rats were infected with 1x10(6) cfu/ml of S. pneumoniae and randomized for treatment with vitamin B6 or saline as controls. Vitamin B6 led to a significant (p > 0.02) reduction of hippocampal apoptosis. According to functional annotation based clustering, vitamin B6 led to down-regulation of genes involved in processes of inflammatory response, while genes encoding for processes related to circadian rhythm, neuronal signaling and apoptotic cell death were mostly up-regulated. CONCLUSIONS Our results provide evidence that attenuation of apoptosis by vitamin B6 is multi-factorial including down-modulation of inflammation, up-regulation of the neuroprotective brain-derived neurotrophic factor and prevention of the exhaustion of cellular energy stores. The neuroprotective effect identifies vitamin B6 as a potential target for the development of strategies to attenuate brain injury in bacterial meningitis.