55 resultados para vattenfri offset
Resumo:
Antegrade nailing of proximal humeral fractures using a straight nail can damage the bony insertion of the supraspinatus tendon and may lead to varus failure of the construct. In order to establish the ideal anatomical landmarks for insertion of the nail and their clinical relevance we analysed CT scans of bilateral proximal humeri in 200 patients (mean age 45.1 years (sd 19.6; 18 to 97) without humeral fractures. The entry point of the nail was defined by the point of intersection of the anteroposterior and lateral vertical axes with the cortex of the humeral head. The critical point was defined as the intersection of the sagittal axis with the medial limit of the insertion of the supraspinatus tendon on the greater tuberosity. The region of interest, i.e. the biggest entry hole that would not encroach on the insertion of the supraspinatus tendon, was calculated setting a 3 mm minimal distance from the critical point. This identified that 38.5% of the humeral heads were categorised as 'critical types', due to morphology in which the predicted offset of the entry point would encroach on the insertion of the supraspinatus tendon that may damage the tendon and reduce the stability of fixation. We therefore emphasise the need for 'fastidious' pre-operative planning to minimise this risk.
Resumo:
BACKGROUND Acetabular retroversion is associated with pincer-type femoroacetabular impingement and can lead to hip osteoarthritis. We report the ten-year results of a previously described patient cohort that had corrective periacetabular osteotomy for the treatment of symptomatic acetabular retroversion. METHODS Clinical and radiographic parameters were assessed preoperatively and at two and ten years postoperatively. A Kaplan-Meier survivorship analysis of the twenty-two patients (twenty-nine hips) with a mean follow-up (and standard deviation) of 11 ± 1 years (range, nine to twelve years) was performed. In addition, a univariate Cox regression analysis was done with conversion to total hip arthroplasty as the primary end point and progression of the osteoarthritis, a fair or poor result according to the Merle d'Aubigné score, or the need for revision surgery as the secondary end points. RESULTS The mean Merle d'Aubigné score improved significantly from 14 ± 1.4 points (range, 12 to 17 points) preoperatively to 16.9 ± 0.9 points (range, 15 to 18 points) at ten years (p < 0.001). There were also significant improvements with regard to hip flexion (p = 0.003), internal rotation (p = 0.003), and adduction (p = 0.002) compared with the preoperative status. No significant increase of the mean Tönnis osteoarthritis score was seen at ten years (p = 0.06). The cumulative ten-year survivorship, with conversion to a total hip arthroplasty as the primary end point, was 100%. The cumulative ten-year survivorship in achievement of one of the secondary end points was 71% (95% confidence interval, 54% to 88%). Predictors for poor outcome were the lack of femoral offset creation and overcorrection of the acetabular version resulting in excessive anteversion. CONCLUSIONS Anteverting periacetabular osteotomy for acetabular retroversion leads to favorable long-term results with preservation of the native hip at a mean of ten years. Overcorrection resulting in excessive anteversion of the hip and omitting concomitant offset creation of the femoral head-neck junction are associated with an unfavorable outcome.
Resumo:
In this study, we assess the climate mitigation potential from afforestation in a mountainous snow-rich region (Switzerland) with strongly varying environmental conditions. Using radiative forcing calculations, we quantify both the carbon sequestration potential and the effect of albedo change at high resolution. We calculate the albedo radiative forcing based on remotely sensed data sets of albedo, global radiation and snow cover. Carbon sequestration is estimated from changes in carbon stocks based on national inventories. We first estimate the spatial pattern of radiative forcing (RF) across Switzerland assuming homogeneous transitions from open land to forest. This highlights where forest expansion still exhibits climatic benefits when including the radiative forcing of albedo change. Second, given that forest expansion is currently the dominant land-use change process in the Swiss Alps, we calculate the radiative forcing that occurred between 1985 and 1997. Our results show that the net RF of forest expansion ranges from −24 W m−2 at low elevations of the northern Prealps to 2 W m−2 at high elevations of the Central Alps. The albedo RF increases with increasing altitude, which offsets the CO2 RF at high elevations with long snow-covered periods, high global radiation and low carbon sequestration. Albedo RF is particularly relevant during transitions from open land to open forest but not in later stages of forest development. Between 1985 and 1997, when overall forest expansion in Switzerland was approximately 4%, the albedo RF offset the CO2 RF by an average of 40%. We conclude that the albedo RF should be considered at an appropriately high resolution when estimating the climatic effect of forestation in temperate mountainous regions.
Resumo:
We present a generalized framework for gradient-domain Metropolis rendering, and introduce three techniques to reduce sampling artifacts and variance. The first one is a heuristic weighting strategy that combines several sampling techniques to avoid outliers. The second one is an improved mapping to generate offset paths required for computing gradients. Here we leverage the properties of manifold walks in path space to cancel out singularities. Finally, the third technique introduces generalized screen space gradient kernels. This approach aligns the gradient kernels with image structures such as texture edges and geometric discontinuities to obtain sparser gradients than with the conventional gradient kernel. We implement our framework on top of an existing Metropolis sampler, and we demonstrate significant improvements in visual and numerical quality of our results compared to previous work.
Resumo:
Offset printing is a common method to produce large amounts of printed matter. We consider a real-world offset printing process that is used to imprint customer-specific designs on napkin pouches. The production equipment used gives rise to various technological constraints. The planning problem consists of allocating designs to printing-plate slots such that the given customer demand for each design is fulfilled, all technological and organizational constraints are met and the total overproduction and setup costs are minimized. We formulate this planning problem as a mixed-binary linear program, and we develop a multi-pass matching-based savings heuristic. We report computational results for a set of problem instances devised from real-world data.
Resumo:
Clock synchronization in the order of nanoseconds is one of the critical factors for time-based localization. Currently used time synchronization methods are developed for the more relaxed needs of network operation. Their usability for positioning should be carefully evaluated. In this paper, we are particularly interested in GPS-based time synchronization. To judge its usability for localization we need a method that can evaluate the achieved time synchronization with nanosecond accuracy. Our method to evaluate the synchronization accuracy is inspired by signal processing algorithms and relies on fine grain time information. The method is able to calculate the clock offset and skew between devices with nanosecond accuracy in real time. It was implemented using software defined radio technology. We demonstrate that GPS-based synchronization suffers from remaining clock offset in the range of a few hundred of nanoseconds but the clock skew is negligible. Finally, we determine a corresponding lower bound on the expected positioning error.
Resumo:
BACKGROUND: We evaluated Swiss slaughterhouse data for integration in a national syndromic surveillance system for the early detection of emerging diseases in production animals. We analysed meat inspection data for cattle, pigs and small ruminants slaughtered between 2007 and 2012 (including emergency slaughters of sick/injured animals); investigating patterns in the number of animals slaughtered and condemned; the reasons invoked for whole carcass condemnations; reporting biases and regional effects. RESULTS: Whole carcass condemnation rates were fairly uniform (1-2‰) over time and between the different types of production animals. Condemnation rates were much higher and less uniform following emergency slaughters. The number of condemnations peaked in December for both cattle and pigs, a time when individuals of lower quality are sent to slaughter when hay and food are limited and when certain diseases are more prevalent. Each type of production animal was associated with a different profile of condemnation reasons. The most commonly reported one was "severe lesions" for cattle, "abscesses" for pigs and "pronounced weight loss" for small ruminants. These reasons could constitute valuable syndromic indicators as they are unspecific clinical manifestations of a large range of animal diseases (as well as potential indicators of animal welfare). Differences were detected in the rate of carcass condemnation between cantons and between large and small slaughterhouses. A large percentage (>60% for all three animal categories) of slaughterhouses operating never reported a condemnation between 2007 and 2012, a potential indicator of widespread non-reporting bias in our database. CONCLUSIONS: The current system offers simultaneous coverage of cattle, pigs and small ruminants for the whole of Switzerland; and traceability of each condemnation to its farm of origin. The number of condemnations was significantly linked to the number of slaughters, meaning that the former should be always be offset by the later in analyses. Because this denominator is only communicated at the end of the month, condemnations may currently only be monitored on a monthly basis. Coupled with the lack of timeliness (30-60 days delay between condemnation and notification), this limits the use of the data for early-detection.
Resumo:
PURPOSE Despite the fact that new and modern short-stems allow bone sparing and saving of soft-tissue and muscles, we still face the challenge of anatomically reconstructing the femoro-acetabular offset and leg length. Therefore a radiological and clinical analysis of a short-stem reconstruction of the femoro-acetabular offset and leg length was performed. METHODS Using an antero-lateral approach, the optimys short-stem (Mathys Ltd, Bettlach, Switzerland) was implanted in 114 consecutive patients in combination with a cementless cup (Fitmore, Zimmer, Indiana, USA; vitamys RM Pressfit, Mathys Ltd, Bettlach, Switzerland). Pre- and postoperative X-rays were done in a standardized technique. In order to better analyse and compare X-ray data a special double coordinate system was developed for measuring femoral- and acetabular offset. Harris hip score was assessed before and six weeks after surgery. Visual analogue scale (VAS) satisfaction, leg length difference and the existence of gluteal muscle insufficiency were also examined. RESULTS Postoperative femoral offset was significantly increased by a mean of 5.8 mm. At the same time cup implantation significantly decreased the acetabular offset by a mean of 3.7 mm, which resulted in an increased combined femoro-acetabular offset of 2.1 mm. Postoperatively, 81.7 % of patients presented with equal leg length. The maximum discrepancy was 10 mm. Clinically, there were no signs of gluteal insufficiency. No luxation occurred during hospitalization. The Harris hip score improved from 47.3 before to 90.1 points already at six weeks after surgery while the mean VAS satisfaction was 9.1. CONCLUSION The analysis showed that loss of femoro-acetabular offset can be reduced with an appropriate stem design. Consequently, a good reconstruction of anatomy and leg length can be achieved. In the early postoperative stage the clinical results are excellent.
Resumo:
Budgets are often simultaneously used for the conflicting purposes of planning and performance evaluation. While economic theory suggests that firms should use separate budgets for conflicting purposes this contrasts with existing evidence that firms rarely do so. We address two open questions related to these observations in an experiment. Specifically, we investigate how a planning task that is in conflict with the performance evaluation task affects behavior in budget negotiations and their outcomes. Additionally, we analyze whether a single budget can be effectively used for both purposes compared to two separate budgets. We develop theory to predict that adding a planning task that is in conflict with the superior’s performance evaluation task increases the subordinate’s cooperation in and after the negotiation of a performance evaluation budget. Moreover, we predict that subordinate cooperation increases even more when the superior is restricted to use a single budget for both purposes. Our results broadly support our hypotheses. Specifically, we find that when budgets are used for both planning and performance evaluation, this increases the subordinate’s budget proposals during the negotiation and his performance after the negotiation. These effects tend to be even larger when the superior is restricted to a single budget rather than separate budgets for planning and performance evaluation, particularly with respect to subordinate performance. In our experimental setting, the benefits of increased subordinate cooperation even more than offset the loss in flexibility from the superior’s restriction to a single budget. The results of this study add to the understanding of the interdependencies of conflicting budgeting purposes and contribute to explain why firms often use a single budget for multiple purposes.