56 resultados para trabecular bone


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Denosumab is an approved therapy for postmenopausal women with osteoporosis at high or increased risk for fracture. In the FREEDOM study, denosumab reduced fracture risk and increased bone mineral density (BMD). We report the spine and hip dual-energy X-ray absorptiometry (DXA) BMD responses from the overall study of 7808 women and from a substudy of 441 participants in which more extensive spine and hip assessments as well as additional skeletal sites were evaluated. Significant BMD improvements were observed as early as 1mo at the lumbar spine, total hip, and trochanter (all p<0.005 vs placebo and baseline). BMD increased progressively at the lumbar spine, total hip, femoral neck, trochanter, 1/3 radius, and total body from baseline to months 12, 24, and 36 (all p<0.005 vs placebo and baseline). BMD gains above the least significant change of more than 3% at 36 months were observed in 90% of denosumab-treated subjects at the lumbar spine and 74% at the total hip, and gains more than 6% occurred in 77% and 38%, respectively. In conclusion, denosumab treatment resulted in significant, early, and continued BMD increases at both trabecular and cortical sites throughout the skeleton over 36mo with important gains observed in most subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a great need for animal models of osteoporosis and sheep are a suitable large animal that meets most requirements. Since it is known that bone mass in humans responds to seasonal changes, this study investigated natural bone metabolism in sheep in order to better define the sheep as a model for osteoporosis. Bone mineral density (BMD), trabecular structure, biochemical markers of bone formation and resorption and estrogen were analysed over a period of 18 months. The lowest BMDs, measured by peripheral quantitative computed tomography (pQCT), were observed during winter. Thereafter, a 5.1% increase in BMD was observed during spring and summer (P<0.05). Bone resorption markers showed a variable pattern, with higher values in spring compared to autumn (P<0.001). The physiological estrus phase during autumn was detected by serum estrogen levels. The findings show that it is necessary to take seasonal variations into account if sheep are used to establish an animal model for osteoporosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spinal cord injury (SCI) leads to severe bone loss in the paralysed limbs and to a resulting increased fracture risk thereof. Since long bone fractures can lead to comorbidities and a reduction in quality of life, it is important to improve bone strength in people with chronic SCI. In this prospective longitudinal cohort study, we investigated whether functional electrical stimulation (FES) induced high-volume cycle training can partially reverse the loss of bone substance in the legs after chronic complete SCI. Eleven participants with motor-sensory complete SCI (mean age 41.9+/-7.5 years; 11.0+/-7.1 years post injury) were recruited. After an initial phase of 14+/-7 weeks of FES muscle conditioning, participants performed on average 3.7+/-0.6 FES-cycling sessions per week, of 58+/-5 min each, over 12 months at each individual's highest power output. Bone and muscle parameters were investigated in the legs by means of peripheral quantitative computed tomography before the muscle conditioning (t1), and after six (t2) and 12 months (t3) of high-volume FES-cycle training. After 12 months of FES-cycling, trabecular and total bone mineral density (BMD) as well as total cross-sectional area in the distal femoral epiphysis increased significantly by 14.4+/-21.1%, 7.0+/-10.8% and 1.2+/-1.5%, respectively. Bone parameters in the femoral shaft showed small but significant decreases, with a reduction of 0.4+/-0.4% in cortical BMD, 1.8+/-3.0% in bone mineral content, and 1.5+/-2.1% in cortical thickness. These decreases mainly occurred between t1 and t2. No significant changes were found in any of the measured bone parameters in the tibia. Muscle CSA at the thigh increased significantly by 35.5+/-18.3%, while fat CSA at the shank decreased by 16.7+/-12.3%. Our results indicate that high-volume FES-cycle training leads to site-specific skeletal changes in the paralysed limbs, with an increase in bone parameters at the actively loaded distal femur but not the passively loaded tibia. Thus, we conclude that high-volume FES-induced cycle training has clinical relevance as it can partially reverse bone loss and thus may reduce fracture risk at this fracture prone site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yajima and co-workers investigated iliac bone biopsies taken before and after parathyroidectomy. They found enhanced de novo osteoid formation and mineral apposition at trabecular sites without signs of previous bone resorption. From this finding they conclude that 'minimodeling' contributes to the increase of bone volume following parathyroidectomy. This report refines our understanding of the compensatory mechanisms by which bone mass and possibly increased mechanical stability of the skeletal apparatus are regained after parathyroidectomy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The influence of adiposity on upper-limb bone strength has rarely been studied in children, despite the high incidence of forearm fractures in this population. OBJECTIVE: The objective was to compare the influence of muscle and fat tissues on bone strength between the upper and lower limbs in prepubertal children. DESIGN: Bone mineral content, total bone cross-sectional area, cortical bone area (CoA), cortical thickness (CoTh) at the radius and tibia (4% and 66%, respectively), trabecular density (TrD), bone strength index (4% sites), cortical density (CoD), stress-strain index, and muscle and fat areas (66% sites) were measured by using peripheral quantitative computed tomography in 427 children (206 boys) aged 7-10 y. RESULTS: Overweight children (n = 93) had greater values for bone variables (0.3-1.3 SD; P < 0.0001) than did their normal-weight peers, except for CoD 66% and CoTh 4%. The between-group differences were 21-87% greater at the tibia than at the radius. After adjustment for muscle cross-sectional area, TrD 4%, bone mineral content, CoA, and CoTh 66% at the tibia remained greater in overweight children, whereas at the distal radius total bone cross-sectional area and CoTh were smaller in overweight children (P < 0.05). Overweight children had a greater fat-muscle ratio than did normal-weight children, particularly in the forearm (92 +/- 28% compared with 57 +/- 17%). Fat-muscle ratio correlated negatively with all bone variables, except for TrD and CoD, after adjustment for body weight (r = -0.17 to -0.54; P < 0.0001). CONCLUSIONS: Overweight children had stronger bones than did their normal-weight peers, largely because of greater muscle size. However, the overweight children had a high proportion of fat relative to muscle in the forearm, which is associated with reduced bone strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To assess the effects of long-term treatment of bone loss with alendronate in a group of paraplegic men, 55 patients were evaluated in a prospective randomized controlled open label study that was 2 years in duration comparing alendronate and calcium with calcium alone. Bone loss was stopped at all cortical and trabecular infralesional sites (distal tibial epiphysis, tibial diaphysis, total hip) with alendronate 10 mg daily.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To assess bone mineral density (BMD) at different skeletal sites in women with hypothalamic or ovarian amenorrhea and the effect of estrogen-gestagen substitution on BMD we compared BMD of 21 amenorrheic patients with hypothalamic or ovarian amenorrhea with that of a control population of 123 healthy women. All amenorrheic patients were recruited from the outpatient clinic of the Division of Gynecological Endocrinology at the University of Berne, a public University Hospital. One hundred and twenty-three healthy, regularly menstruating women recruited in the Berne area served as a control group. BMD was measured using dual-energy X-ray absorptiometry (DXA). At each site where it was measured, mean BMD was lower in the amenorrheic group than in the control group. Compared with the control group, average BMD in the amenorrheic group was 85% at lumbar spine (p < 0.0001), 92% at femoral neck (p < 0.02), 90% at Ward's triangle (p < 0.03), 92% at tibial diaphysis (p < 0.0001) and 92% at tibial epiphysis (p < 0.03). Fifteen amenorrheic women received estrogen-gestagen replacement therapy (0.03 mg ethinylestradiol and 0.15 mg desogestrel daily for 21 days per month), bone densitometry being repeated within 12-24 months. An annual increase in BMD of 0.2% to 2.9% was noted at all measured sites, the level of significance being reached at the lumbar spine (p < 0.0012) and Ward's triangle (p < 0.033). In conclusion BMD is lower in amenorrheic young women than in a population of normally menstruating, age-matched women in both mainly trabecular (lumbar spine, Ward's triangle, tibial epiphysis) and mainly cortical bone (femoral neck, tibial diaphysis).(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reported effects of cyclosporin A (Sandimmun, CsA) on bone have been both contradictory and controversial. Thus, stimulation of new bone formation as well as increased mineral and matrix resorption have been observed. To investigate the response of basal mineral and matrix turnover to CsA treatment at different stages of skeletal development, comparative experiments were conducted in young growing female rats and in adults. Fifty-six young animals (study A) and 40 adults (study B) received orally either the carrier substance or 5, 15, and 30 mg/kg CsA for 30 days. The following parameters were measured: (a) total skeletal mineral content by dual energy X-ray absorptiometry (DEXA) on days 1 and 30; (b) tibial trabecular volume at day 30; (c) serum osteocalcin at 5-day intervals; (d) urinary deoxypyridinoline (Dpd) excretion (days 1, 15, and 30); and (e) plasma levels of CsA. Results can be summarized as follows: in young rats (study A), total skeletal mineral was not modified by the 5- and 15-mg/kg doses of CsA, whereas 30 mg/kg induced a significant decrease (-15%, p < 0.01). This parameter was not significantly modified in adult animals (study B) subjected to the same doses. The administration of 5 mg/kg CsA did not alter tibial trabecular volume in young rats, but 15 and 30 mg/kg significantly lowered this parameter (-16.3%, p < 0.02, and -42%, p < 0.001, respectively). In adult rats, tibial trabecular volume remained unchanged with the exception of the group receiving 30 mg/kg which exhibited significantly lower values (-28%, p < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION The omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) are the immediate precursors to a number of important mediators of immunity, inflammation and bone function, with products of omega-6 generally thought to promote inflammation and favour bone resorption. Western diets generally provide a 10 to 20-fold deficit in omega-3 PUFAs compared with omega-6, and this is thought to have contributed to the marked rise in incidence of disorders of modern human societies, such as heart disease, colitis and perhaps osteoporosis. Many of our food production animals, fed on grains rich in omega-6, are also exposed to a dietary deficit in omega-3, with perhaps similar health consequences. Bone fragility due to osteoporotic changes in laying hens is a major economic and welfare problem, with our recent estimates of breakage rates indicating up to 95% of free range hens suffer breaks during lay. METHODS Free range hens housed in full scale commercial systems were provided diets supplemented with omega-3 alpha linolenic acid, and the skeletal benefits were investigated by comparison to standard diets rich in omega-6. RESULTS There was a significant 40-60% reduction in keel bone breakage rate, and a corresponding reduction in breakage severity in the omega-3 supplemented hens. There was significantly greater bone density and bone mineral content, alongside increases in total bone and trabecular volumes. The mechanical properties of the omega-3 supplemented hens were improved, with strength, energy to break and stiffness demonstrating significant increases. Alkaline phosphatase (an osteoblast marker) and tartrate-resistant acid phosphatase (an osteoclast marker) both showed significant increases with the omega-3 diets, indicating enhanced bone turnover. This was corroborated by the significantly lower levels of the mature collagen crosslinks, hydroxylysyl pyridinoline, lysyl pyridinoline and histidinohydroxy-lysinonorleucine, with a corresponding significant shift in the mature:immature crosslink ratio. CONCLUSIONS The improved skeletal health in laying hens corresponds to as many as 68million fewer hens suffering keel fractures in the EU each year. The biomechanical and biochemical evidence suggests that increased bone turnover has enhanced the bone mechanical properties, and that this may suggest potential benefits for human osteoporosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the fact that bone mineral density (BMD) is an important fracture risk predictor in human medicine, studies in equine orthopedic research are still lacking. We hypothesized that BMD correlates with bone failure and fatigue fractures of this bone. Thus, the objectives of this study were to measure the structural and mechanical properties of the proximal phalanx with dual energy X-ray absorptiometry (DXA), to correlate the data obtained from DXA and computer tomography (CT) measurements to those obtained by loading pressure examination and to establish representative region of interest (ROI) for in vitro BMD measurements of the equine proximal phalanx for predicting bone failure force. DXA was used to measure the whole bone BMD and additional three ROI sites in 14 equine proximal phalanges. Following evaluation of the bone density, whole bone, cortical width and area in the mid-diaphyseal plane were measured on CT images. Bones were broken using a manually controlled universal bone crusher to measure bone failure force and reevaluated for the site of fractures on follow-up CT images. Compressive load was applied at a constant displacement rate of 2 mm/min until failure, defined as the first clear drop in the load measurement. The lowest BMD was measured at the trabecular region (mean +/- SD: 1.52 +/- 0.12 g/cm2; median: 1.48 g/cm2; range: 1.38-1.83 g/cm2). There was a significant positive linear correlation between trabelcular BMD and the breaking strength (P = 0.023, r = 0.62). The trabecular region of the proximal phalanx appears to be the only significant indicator of failure of strength in vitro. This finding should be reassessed to further reveal the prognostic value of trabecular BMD in an in vivo fracture risk model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES Low levels of oxygen has been shown to be involved in the induction of osteogenesis, particularly in bone repair. It is unknown whether hypoxia leads to osteogenesis at the hypoxia prone skeletal sites in limited systemic sclerosis. This study determined the total and trabecular volumetric bone mineral density (vBMD) at the hypoxia prone site of the juxta-articular metacarpal bone. METHODS In this cross-sectional study, female patients with limited systemic sclerosis were included and compared to healthy controls. Peripheral quantitative computed tomography was used to measure cross-sectional area, total vBMD, and trabecular vBMD at the radius, the tibia and the third metacarpal bone. Disease severity was assessed by the modified Rodnan Skin Score. RESULTS Twenty consecutive patients were included in the sclerosis group and 20 in the control group. Mean age was 60 years (range 52-68 years), and mean disease duration was 45 months (range 4-156 months). Age, height, and weight were comparable between the groups. The mean modified Rodnan Skin Score was 1.78 (range 0 to 8). The sclerosis group showed both higher total and trabecular vBMD at the distal metacarpal bone (p=0.05 and 0.04, respectively). vBMD of the tibia and radius did not differ in both groups. CONCLUSIONS vBMD at the juxta-articular metacarpal bone in patients with limited systemic sclerosis is increased, possibly due to an alteration in local bone metabolism and hypoxia induced local osteogenesis.