51 resultados para site specific performance
Novel Prodrug-Like Fusion Toxin with Protease-Sensitive Bioorthogonal PEGylation for Tumor Targeting
Resumo:
Highly potent biotoxins like Pseudomonas exotoxin A (ETA) are attractive payloads for tumor targeting. However, despite replacement of the natural cell-binding domain of ETA by tumor-selective antibodies or alternative binding proteins like designed ankyrin repeat proteins (DARPins) the therapeutic window of such fusion toxins is still limited by target-independent cellular uptake, resulting in toxicity in normal tissues. Furthermore, the strong immunogenicity of the bacterial toxin precludes repeated administration in most patients. Site-specific modification to convert ETA into a prodrug-like toxin which is reactivated specifically in the tumor, and at the same time has a longer circulation half-life and is less immunogenic, is therefore appealing. To engineer a prodrug-like fusion toxin consisting of the anti-EpCAM DARPin Ec1 and a domain I-deleted variant of ETA (ETA″), we used strain-promoted azide alkyne cycloaddition for bioorthogonal conjugation of linear or branched polyethylene glycol (PEG) polymers at defined positions within the toxin moiety. Reversibility of the shielding was provided by a designed peptide linker containing the cleavage site for the rhinovirus 3C model protease. We identified two distinct sites, one within the catalytic domain and one close to the C-terminal KDEL sequence of Ec1-ETA″, simultaneous PEGylation of which resulted in up to 1000-fold lower cytotoxicity in EpCAM-positive tumor cells. Importantly, the potency of the fusion toxin was fully restored by proteolytic unveiling. Upon systemic administration in mice, PEGylated Ec1-ETA″ was much better tolerated than Ec1-ETA″; it showed a longer circulation half-life and an almost 10-fold increased area under the curve (AUC). Our strategy of engineering prodrug-like fusion toxins by bioorthogonal veiling opens new possibilities for targeting tumors with more specificity and efficacy.
Resumo:
It has become increasingly clear that desertification can only be tackled through a multi-disciplinary approach that not only involves scientists but also stakeholders. In the DESIRE project such an approach was taken. As a first step, a conceptual framework was developed in which the factors and processes that may lead to land degradation and desertification were described. Many of these factors do not work independently, but can reinforce or weaken one another, and to illustrate these relationships sustainable management and policy feedback loops were included. This conceptual framework can be applied globally, but can also be made site-specific to take into account that each study site has a unique combination of bio-physical, socio-economic and political conditions. Once the conceptual framework was defined, a methodological framework was developed in which the methodological steps taken in the DESIRE approach were listed and their logic and sequence were explained. The last step was to develop a concrete working plan to put the project into action, involving stakeholders throughout the process. This series of steps, in full or in part, offers explicit guidance for other organizations or projects that aim to reduce land degradation and desertification.
Keeping bugs in check: The mucus layer as a critical component in maintaining intestinal homeostasis
Resumo:
In the mammalian gastrointestinal tract the close vicinity of abundant immune effector cells and trillions of commensal microbes requires sophisticated barrier and regulatory mechanisms to maintain vital host-microbial interactions and tissue homeostasis. During co-evolution of the host and its intestinal microbiota a protective multilayered barrier system was established to segregate the luminal microbes from the intestinal mucosa with its potent immune effector cells, limit bacterial translocation into host tissues to prevent tissue damage, while ensuring the vital functions of the intestinal mucosa and the luminal gut microbiota. In the present review we will focus on the different layers of protection in the intestinal tract that allow the successful mutualism between the microbiota and the potent effector cells of the intestinal innate and adaptive immune system. In particular, we will review some of the recent findings on the vital functions of the mucus layer and its site-specific adaptations to the changing quantities and complexities of the microbiota along the (gastro-) intestinal tract. Understanding the regulatory pathways that control the establishment of the mucus layer, but also its degradation during intestinal inflammation may be critical for designing novel strategies aimed at maintaining local tissue homeostasis and supporting remission from relapsing intestinal inflammation in patients with inflammatory bowel diseases.
Resumo:
The ribosome is a highly conserved cellular complex and constitutes the center of protein biosynthesis. As the ribosome consists to about 2/3 of ribosomal RNA (rRNA), the rRNA is involved in most steps of translation. In order to investigate the role of some defined rRNA residues in different aspects of translation we use the atomic mutagenesis approach. This method allows the site-specific incorporation of unnatural nucleosides into the rRNA in the context of the complete 70S from Thermus aquaticus, and thereby exceeds the possibilities of conventional mutagenesis. We first studied ribosome-stimulated EF-G GTP hydrolysis. Here, we could show that the non-bridging phosphate oxygen of A2662, which is part of the Sarcin-Ricin-Loop, is required for EF-G GTPase activation by the ribosome. EF-G GTPase is a crucial step for tRNA translocation from the A- to the P-site, and from the P- to the E-site, respectively. We furthermore used the atomic mutagenesis approach to more precisely characterize the 23S rRNA functional groups involved in E-site tRNA binding. While the ribosomal A- and P-sites have been functionally well characterized in the past, the contribution of the E-site to protein biosynthesis is still poorly understood in molecular terms. Our data disclose the importance of the highly conserved E-site base pair G2421-C2395 for effective translation. Ribosomes with a disrupted G2421-C2395 base pair are defective in tRNA binding to the E-site. This results in an impaired translation of genuine mRNAs, while homo-polymeric templates are not affected. Cumulatively our data emphasize the importance of E-site tRNA occupancy and in particular the intactness of the 23S rRNA base pair G2421-C2395 for productive protein biosynthesis.
Resumo:
Orbital tuning is central for ice core chronologies beyond annual layer counting, available back to 60 ka (i.e. thousands of years before 1950) for Greenland ice cores. While several complementary orbital tuning tools have recently been developed using δ¹⁸Oatm, δO₂⁄N₂ and air content with different orbital targets, quantifying their uncertainties remains a challenge. Indeed, the exact processes linking variations of these parameters, measured in the air trapped in ice, to their orbital targets are not yet fully understood. Here, we provide new series of δO₂∕N₂ and δ¹⁸Oatm data encompassing Marine Isotopic Stage (MIS) 5 (between 100 and 160 ka) and the oldest part (340–800 ka) of the East Antarctic EPICA Dome C (EDC) ice core. For the first time, the measurements over MIS 5 allow an inter-comparison of δO₂∕N₂ and δ¹⁸Oatm records from three East Antarctic ice core sites (EDC, Vostok and Dome F). This comparison highlights some site-specific δO₂∕N₂ variations. Such an observation, the evidence of a 100 ka periodicity in the δO₂∕N₂ signal and the difficulty to identify extrema and mid-slopes in δO2∕N2 increase the uncertainty associated with the use of δO₂∕N₂ as an orbital tuning tool, now calculated to be 3–4 ka. When combining records of δ¹⁸Oatm and δO₂∕N₂ from Vostok and EDC, we find a loss of orbital signature for these two parameters during periods of minimum eccentricity (∼ 400 ka, ∼ 720–800 ka). Our data set reveals a time-varying offset between δO₂∕N₂ and δ¹⁸Oatm records over the last 800 ka that we interpret as variations in the lagged response of δ¹⁸Oatm to precession. The largest offsets are identified during Terminations II, MIS 8 and MIS 16, corresponding to periods of destabilization of the Northern polar ice sheets. We therefore suggest that the occurrence of Heinrich–like events influences the response of δ¹⁸Oatm to precession.