61 resultados para simple defecation
Resumo:
Background Tests for recent infections (TRIs) are important for HIV surveillance. We have shown that a patient's antibody pattern in a confirmatory line immunoassay (Inno-Lia) also yields information on time since infection. We have published algorithms which, with a certain sensitivity and specificity, distinguish between incident (< = 12 months) and older infection. In order to use these algorithms like other TRIs, i.e., based on their windows, we now determined their window periods. Methods We classified Inno-Lia results of 527 treatment-naïve patients with HIV-1 infection < = 12 months according to incidence by 25 algorithms. The time after which all infections were ruled older, i.e. the algorithm's window, was determined by linear regression of the proportion ruled incident in dependence of time since infection. Window-based incident infection rates (IIR) were determined utilizing the relationship ‘Prevalence = Incidence x Duration’ in four annual cohorts of HIV-1 notifications. Results were compared to performance-based IIR also derived from Inno-Lia results, but utilizing the relationship ‘incident = true incident + false incident’ and also to the IIR derived from the BED incidence assay. Results Window periods varied between 45.8 and 130.1 days and correlated well with the algorithms' diagnostic sensitivity (R2 = 0.962; P<0.0001). Among the 25 algorithms, the mean window-based IIR among the 748 notifications of 2005/06 was 0.457 compared to 0.453 obtained for performance-based IIR with a model not correcting for selection bias. Evaluation of BED results using a window of 153 days yielded an IIR of 0.669. Window-based IIR and performance-based IIR increased by 22.4% and respectively 30.6% in 2008, while 2009 and 2010 showed a return to baseline for both methods. Conclusions IIR estimations by window- and performance-based evaluations of Inno-Lia algorithm results were similar and can be used together to assess IIR changes between annual HIV notification cohorts.
Resumo:
This article describes in short sections the use and interpretation of indirect blood pressure measurements, central venous pressure, body temperature, pulse oximetry, end tidal CO2 measurements, pulse and heart rate, urine production and emergency laboratory values. Most of these parameters are directly or indirectly linked to the perfusion of the patient. Optimizing these values are one of the most important goals in emergency and critical care medicine.
Resumo:
Arginine vasopressin (AVP) has a key role in osmoregulation by facilitating water transport in the collecting duct. Recent evidence suggests that AVP may have additional effects on renal function and favor cyst growth in polycystic kidney disease. Whether AVP also affects kidney structure in the general population is unknown. We analyzed the association of copeptin, an established surrogate for AVP, with parameters of renal function and morphology in a multicentric population-based cohort. Participants from families of European ancestry were randomly selected in three Swiss cities. We used linear multilevel regression analysis to explore the association of copeptin with renal function parameters as well as kidney length and the presence of simple renal cysts assessed by ultrasound examination. Copeptin levels were log-transformed. The 529 women and 481 men had median copeptin levels of 3.0 and 5.2 pmol/L, respectively (P<0.001). In multivariable analyses, the copeptin level was associated inversely with eGFR (β=-2.1; 95% confidence interval [95% CI], -3.3 to -0.8; P=0.002) and kidney length (β=-1.2; 95% CI, -1.9 to -0.4; P=0.003) but positively with 24-hour urinary albumin excretion (β=0.11; 95% CI, 0.01 to 0.20; P=0.03) and urine osmolality (β=0.08; 95% CI, 0.05 to 0.10; P<0.001). A positive association was found between the copeptin level and the presence of renal cysts (odds ratio, 1.6; 95% CI, 1.1 to 2.4; P=0.02). These results suggest that AVP has a pleiotropic role in renal function and may favor the development of simple renal cysts.
Resumo:
INTRODUCTION Optimising the use of blood has become a core task of transfusion medicine. Because no general guidelines are available in Switzerland, we analysed the effects of the introduction of a guideline on red blood cell (RBC) transfusion for elective orthopaedic surgery. METHODS Prospective, multicentre, before-and-after study comparing the use of RBCs in adult elective hip or knee replacement before and after the implementation of a guideline in 10 Swiss hospitals, developed together with all participants. RESULTS We included 2,134 patients, 1,238 in 7 months before, 896 in 6 months after intervention. 57 (34 or 2.7% before, 23 or 2.6% after) were lost before follow-up visit. The mean number of transfused RBC units decreased from 0.5 to 0.4 per patient (0.1, 95% CI 0.08-0.2; p = 0.014), the proportion of transfused patients from 20.9% to 16.9% (4%, 95% C.I. 0.7-7.4%; p = 0.02), and the pre-transfusion haemoglobin from 82.6 to 78.2 g/l (4.4 g/l, 95% C. I. 2.15-6.62 g/l, p < 0.001). We did not observe any statistically significant changes in in-hospital mortality (0.4% vs. 0%) and morbidity (4.1% vs. 4.0%), median hospital length of stay (9 vs. 9 days), follow-up mortality (0.4% vs. 0.2%) and follow-up morbidity (6.9% vs. 6.0%). CONCLUSIONS The introduction of a simple transfusion guideline reduces and standardises the use of RBCs by decreasing the haemoglobin transfusion trigger, without negative effects on the patient outcome. Local support, training, and monitoring of the effects are requirements for programmes optimising the use of blood.
Resumo:
BACKGROUND Since the pioneering work of Jacobson and Suarez, microsurgery has steadily progressed and is now used in all surgical specialities, particularly in plastic surgery. Before performing clinical procedures it is necessary to learn the basic techniques in the laboratory. OBJECTIVE To assess an animal model, thereby circumventing the following issues: ethical rules, cost, anesthesia and training time. METHODS Between July 2012 and September 2012, 182 earthworms were used for 150 microsurgical trainings to simulate discrepancy microanastomoses. Training was undertaken over 10 weekly periods. Each training session included 15 simulations of microanastomoses performed using the Harashina technique (earthworm diameters >1.5 mm [n=5], between 1.0 mm and 1.5 mm [n=5], and <1.0 mm [n=5]). The technique is presented and documented. A linear model with main variable as the number of the week (as a numeric covariate) and the size of the animal (as a factor) was used to determine the trend in time of anastomosis over subsequent weeks as well as differences between the different size groups. RESULTS The linear model showed a significant trend (P<0.001) in time of anastomosis in the course of the training, as well as significant differences (P<0.001) between the groups of animal of different sizes. For diameter >1.5 mm, mean anastomosis time decreased from 19.6±1.9 min to 12.6±0.7 min between the first and last week of training. For training involving smaller diameters, the results showed a reduction in execution time of 36.1% (P<0.01) (diameter between 1.0 mm and 1.5 mm) and 40.6% (P<0.01) (diameter <1.0 mm) between the first and last weeks. The study demonstrates an improvement in the dexterity and speed of nodes' execution. CONCLUSION The earthworm appears to be a reliable experimental model for microsurgical training of discrepancy microanastomoses. Its numerous advantages, as discussed in the present report, show that this model of training will significantly grow and develop in the near future.
Resumo:
Coordination-driven gelation of a benzothiadiazole-fused tetrathiafulvalene (TTF) is demonstrated. This is the first work reporting highly stable metallogels based on a donor-acceptor conjugate with such a simple structure for the construction of new low-bandgap materials with various functional properties and novel nanostructures.
Resumo:
OBJECTIVES Cerebral hypoxic-ischaemic injury following cardiac arrest is a devastating disease affecting thousands of patients each year. There is a complex interaction between post-resuscitation injury after whole-body ischaemia-reperfusion and cerebral damage which cannot be explored in in vitro systems only; there is a need for animal models. In this study, we describe and evaluate the feasibility and efficiency of our simple rodent cardiac arrest model. METHODS Ten wistar rats were subjected to 9 and 10 minutes of cardiac arrest. Cardiac arrest was introduced with a mixture of the short-acting beta-blocking drug esmolol and potassium chloride. RESULTS All animals could be resuscitated within 1 minute, and survived until day 5.General health score and neurobehavioural testing indicated substantial impairment after cardiac arrest, without differences between groups. Histological examination of the hippocampus CA1 segment, the most vulnerable segment of the cerebrum, demonstrated extensive damage in the cresyl violet staining, as well as in the Fluoro-Jade B staining and in the Iba-1 staining, indicating recruitment of microglia after the hypoxic-ischaemic event. Again, there were no differences between the 9- and 10-minute cardiac arrest groups. DISCUSSION We were able to establish a simple and reproducible 9- and 10-minute rodent cardiac arrest models with a well-defined no-flow-time. Extensive damage can be found in the hippocampus CA1 segment. The lack of difference between 9- and 10-minute cardiac arrest time in the neuropsychological, the open field test and the histological evaluations is mainly due to the small sample size.
Resumo:
Soil carbon (C) storage is a key ecosystem service. Soil C stocks play a vital role in soil fertility and climate regulation, but the factors that control these stocks at regional and national scales are unknown, particularly when their composition and stability are considered. As a result, their mapping relies on either unreliable proxy measures or laborious direct measurements. Using data from an extensive national survey of English grasslands, we show that surface soil (0–7 cm) C stocks in size fractions of varying stability can be predicted at both regional and national scales from plant traits and simple measures of soil and climatic conditions. Soil C stocks in the largest pool, of intermediate particle size (50–250 μm), were best explained by mean annual temperature (MAT), soil pH and soil moisture content. The second largest C pool, highly stable physically and biochemically protected particles (0·45–50 μm), was explained by soil pH and the community abundance-weighted mean (CWM) leaf nitrogen (N) content, with the highest soil C stocks under N-rich vegetation. The C stock in the small active fraction (250–4000 μm) was explained by a wide range of variables: MAT, mean annual precipitation, mean growing season length, soil pH and CWM specific leaf area; stocks were higher under vegetation with thick and/or dense leaves. Testing the models describing these fractions against data from an independent English region indicated moderately strong correlation between predicted and actual values and no systematic bias, with the exception of the active fraction, for which predictions were inaccurate. Synthesis and applications. Validation indicates that readily available climate, soils and plant survey data can be effective in making local- to landscape-scale (1–100 000 km2) soil C stock predictions. Such predictions are a crucial component of effective management strategies to protect C stocks and enhance soil C sequestration.
Resumo:
This study evaluated the feasibility of documenting patterned injury using three dimensions and true colour photography without complex 3D surface documentation methods. This method is based on a generated 3D surface model using radiologic slice images (CT) while the colour information is derived from photographs taken with commercially available cameras. The external patterned injuries were documented in 16 cases using digital photography as well as highly precise photogrammetry-supported 3D structured light scanning. The internal findings of these deceased were recorded using CT and MRI. For registration of the internal with the external data, two different types of radiographic markers were used and compared. The 3D surface model generated from CT slice images was linked with the photographs, and thereby digital true-colour 3D models of the patterned injuries could be created (Image projection onto CT/IprojeCT). In addition, these external models were merged with the models of the somatic interior. We demonstrated that 3D documentation and visualization of external injury findings by integration of digital photography in CT/MRI data sets is suitable for the 3D documentation of individual patterned injuries to a body. Nevertheless, this documentation method is not a substitution for photogrammetry and surface scanning, especially when the entire bodily surface is to be recorded in three dimensions including all external findings, and when precise data is required for comparing highly detailed injury features with the injury-inflicting tool.
Resumo:
OBJECTIVES To improve malnutrition awareness and management in our department of general internal medicine; to assess patients' nutritional risk; and to evaluate whether an online educational program leads to an increase in basic knowledge and more frequent nutritional therapies. METHODS A prospective pre-post intervention study at a university department of general internal medicine was conducted. Nutritional screening using Nutritional Risk Score 2002 (NRS 2002) was performed, and prescriptions of nutritional therapies were assessed. The intervention included an online learning program and a pocket card for all residents, who had to fill in a multiple-choice questions (MCQ) test about basic nutritional knowledge before and after the intervention. RESULTS A total of 342 patients were included in the preintervention phase, and 300 were in the postintervention phase. In the preintervention phase, 54.1% were at nutritional risk (NRS 2002 ≥3) compared with 61.7% in the postintervention phase. There was no increase in the prescription of nutritional therapies (18.7% versus 17.0%). Forty-nine and 41 residents (response rate 58% and 48%) filled in the MCQ test before and after the intervention, respectively. The mean percentage of correct answers was 55.6% and 59.43%, respectively (which was not significant). Fifty of 84 residents completed the online program. The residents who participated in the whole program scored higher on the second MCQ test (63% versus 55% correct answers, P = 0.031). CONCLUSIONS Despite a high ratio of malnourished patients, the nutritional intervention, as assessed by nutritional prescriptions, is insufficient. However, the simple educational program via Internet and usage of NRS 2002 pocket cards did not improve either malnutrition awareness or nutritional treatment. More sophisticated educational systems to fight malnutrition are necessary.
Resumo:
BACKGROUND Neuronavigation is an essential tool in cranial neurosurgery. Despite continuing improvements in the technologies used for neuronavigation, certain events can lead to unacceptable mismatches. To provide the best possible outcome for the patients, surgeons need to do everything possible to reduce mismatches. METHODS AND RESULTS Some simple techniques can greatly improve neuronavigation accuracy and patient safety. We describe two simple methods that were developed or refined in the Department of Neurosurgery at Inselspital, Bern, Switzerland: the transdermal navigation landmark and use of bone screws for co-registration. CONCLUSIONS Both techniques are easy to use, do not require expensive additional instruments, and are helpful in procedures involving neuronavigation.
Resumo:
In this work, electrophoretic preconcentration of protein and peptide samples in microchannels was studied theoretically using the 1D dynamic simulator GENTRANS, and experimentally combined with MS. In all configurations studied, the sample was uniformly distributed throughout the channel before power application, and driving electrodes were used as microchannel ends. In the first part, previously obtained experimental results from carrier-free systems are compared to simulation results, and the effects of atmospheric carbon dioxide and impurities in the sample solution are examined. Simulation provided insight into the dynamics of the transport of all components under the applied electric field and revealed the formation of a pure water zone in the channel center. In the second part, the use of an IEF procedure with simple well defined amphoteric carrier components, i.e. amino acids, for concentration and fractionation of peptides was investigated. By performing simulations a qualitative description of the analyte behavior in this system was obtained. Neurotensin and [Glu1]-Fibrinopeptide B were separated by IEF in microchannels featuring a liquid lid for simple sample handling and placement of the driving electrodes. Component distributions in the channel were detected using MALDI- and nano-ESI-MS and data were in agreement with those obtained by simulation. Dynamic simulations are demonstrated to represent an effective tool to investigate the electrophoretic behavior of all components in the microchannel.