96 resultados para semantic segmentation
Resumo:
In this paper, we propose a fully automatic, robust approach for segmenting proximal femur in conventional X-ray images. Our method is based on hierarchical landmark detection by random forest regression, where the detection results of 22 global landmarks are used to do the spatial normalization, and the detection results of the 59 local landmarks serve as the image cue for instantiation of a statistical shape model of the proximal femur. To detect landmarks in both levels, we use multi-resolution HoG (Histogram of Oriented Gradients) as features which can achieve better accuracy and robustness. The efficacy of the present method is demonstrated by experiments conducted on 150 clinical x-ray images. It was found that the present method could achieve an average point-to-curve error of 2.0 mm and that the present method was robust to low image contrast, noise and occlusions caused by implants.
Resumo:
Knowledge of landmarks and contours in anteroposterior (AP) pelvis X-rays is invaluable for computer aided diagnosis, hip surgery planning and image-guided interventions. This paper presents a fully automatic and robust approach for landmarking and segmentation of both pelvis and femur in a conventional AP X-ray. Our approach is based on random forest regression and hierarchical sparse shape composition. Experiments conducted on 436 clinical AP pelvis x-rays show that our approach achieves an average point-to-curve error around 1.3 mm for femur and 2.2 mm for pelvis, both with success rates around 98%. Compared to existing methods, our approach exhibits better performance in both the robustness and the accuracy.
Resumo:
OBJECTIVE Neuro-imaging studies have suggested that the ability to imitate meaningless and meaningful gestures may differentially depend on superior (SPL) and inferior (IPL) parietal lobule. Therefore, we hypothesized that imaging-guided neuro-navigated continuous theta burst stimulation (cTBS) over left SPL mainly affects meaningless and over left IPL predominantly meaningful gestures. METHODS Twelve healthy subjects participated in this study. High resolution structural MRI was used for imaging guided neuro-navigation cTBS. Participants were targeted with one train of cTBS in three experimental sessions: sham stimulation over vertex and real cTBS over left SPL and IPL, respectively. An imitation task, including 24 meaningless and 24 meaningful gestures, was performed 'offline'. RESULTS cTBS over both left IPL and SPL significantly interfered with gestural imitation. There was no differential effect of SPL and IPL cTBS on gesture type (meaningless versus meaningful). CONCLUSIONS Our findings confirm that left posterior parietal cortex plays a predominant role in gestural imitation. However, the hypothesis based on the dual route model suggesting a differential role of SPL and IPL in the processing of meaningless and meaningful gestures could not be confirmed. SIGNIFICANCE Left SPL and IPL play a common role within the posterior-parietal network in gestural imitation regardless of semantic content.
Resumo:
We present a fully automatic segmentation method for multi-modal brain tumor segmentation. The proposed generative-discriminative hybrid model generates initial tissue probabilities, which are used subsequently for enhancing the classi�cation and spatial regularization. The model has been evaluated on the BRATS2013 training set, which includes multimodal MRI images from patients with high- and low-grade gliomas. Our method is capable of segmenting the image into healthy (GM, WM, CSF) and pathological tissue (necrotic, enhancing and non-enhancing tumor, edema). We achieved state-of-the-art performance (Dice mean values of 0.69 and 0.8 for tumor subcompartments and complete tumor respectively) within a reasonable timeframe (4 to 15 minutes).
Resumo:
Previous analyses of aortic displacement and distension using computed tomography angiography (CTA) were performed on double-oblique multi-planar reformations and did not consider through-plane motion. The aim of this study was to overcome this limitation by using a novel computational approach for the assessment of thoracic aortic displacement and distension in their true four-dimensional extent. Vessel segmentation with landmark tracking was executed on CTA of 24 patients without evidence of aortic disease. Distension magnitudes and maximum displacement vectors (MDV) including their direction were analyzed at 5 aortic locations: left coronary artery (COR), mid-ascending aorta (ASC), brachiocephalic trunk (BCT), left subclavian artery (LSA), descending aorta (DES). Distension was highest for COR (2.3 ± 1.2 mm) and BCT (1.7 ± 1.1 mm) compared with ASC, LSA, and DES (p < 0.005). MDV decreased from COR to LSA (p < 0.005) and was highest for COR (6.2 ± 2.0 mm) and ASC (3.8 ± 1.9 mm). Displacement was directed towards left and anterior at COR and ASC. Craniocaudal displacement at COR and ASC was 1.3 ± 0.8 and 0.3 ± 0.3 mm. At BCT, LSA, and DES no predominant displacement direction was observable. Vessel displacement and wall distension are highest in the ascending aorta, and ascending aortic displacement is primarily directed towards left and anterior. Craniocaudal displacement remains low even close to the left cardiac ventricle.
Resumo:
In this paper, we propose novel methodologies for the automatic segmentation and recognition of multi-food images. The proposed methods implement the first modules of a carbohydrate counting and insulin advisory system for type 1 diabetic patients. Initially the plate is segmented using pyramidal mean-shift filtering and a region growing algorithm. Then each of the resulted segments is described by both color and texture features and classified by a support vector machine into one of six different major food classes. Finally, a modified version of the Huang and Dom evaluation index was proposed, addressing the particular needs of the food segmentation problem. The experimental results prove the effectiveness of the proposed method achieving a segmentation accuracy of 88.5% and recognition rate equal to 87%
Resumo:
BACKGROUND AND PURPOSE Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations. METHODS We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error. RESULTS Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p<0.05) but no significant differences for CETV (p>0.05) with regard to the Dice overlap coefficients. Spearman's rank correlation coefficients (ρ) of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation. CONCLUSIONS In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity.
Resumo:
In diagnostic neuroradiology as well as in radiation oncology and neurosurgery, there is an increasing demand for accurate segmentation of tumor-bearing brain images. Atlas-based segmentation is an appealing automatic technique thanks to its robustness and versatility. However, atlas-based segmentation of tumor-bearing brain images is challenging due to the confounding effects of the tumor in the patient image. In this article, we provide a brief background on brain tumor imaging and introduce the clinical perspective, before we categorize and review the state of the art in the current literature on atlas-based segmentation for tumor-bearing brain images. We also present selected methods and results from our own research in more detail. Finally, we conclude with a short summary and look at new developments in the field, including requirements for future routine clinical use.
Resumo:
Because the knowledge in the World Wide Web is continuously expanding, Web Knowledge Aggregation, Representation and Reasoning (abbreviated as KR) is becoming increasingly important. This article demonstrates how fuzzy ontologies can be used in KR to improve the interactions between humans and computers. The gap between the Social and Semantic Web can be reduced, and a Social Semantic Web may become possible. As an illustrative example, we demonstrate how fuzzy logic and KR can enhance technologies for cognitive cities. The underlying notion of these technologies is based on connectivism, which can be improved by incorporating the results of digital humanities research.
Resumo:
This introductory chapter briefly introduces a few milestones in the voluminous previous literature on semantic roles, and charts the territory in which the papers of this volume aim to make a contribution. This territory is characterized by fairly disparate conceptualizations of semantic roles and their status in theories of grammar and the lexicon, as well as by diverse and probably complementary ways of deriving or identifying them based on linguistic data. Particular attention is given to the question of how selected roles appear to relate to each other, and we preliminarily address the issue of how roles, subroles, and role complexes are best thought of in general.
Resumo:
While most healthy elderly are able to manage their everyday activities, studies showed that there are both stable and declining abilities during healthy aging. For example, there is evidence that semantic memory processes which involve controlled retrieval mechanism decrease, whereas the automatic functioning of the semantic network remains intact. In contrast, patients with Alzheimer’s disease (AD) suffer from episodic and semantic memory impairments aggravating their daily functioning. In AD, severe episodic as well as semantic memory deficits are observable. While the hallmark symptom of episodic memory decline in AD is well investigated, the underlying mechanisms of semantic memory deterioration remain unclear. By disentangling the semantic memory impairments in AD, the present thesis aimed to improve early diagnosis and to find a biomarker for dementia. To this end, a study on healthy aging and a study with dementia patients were conducted investigating automatic and controlled semantic word retrieval. Besides the inclusion of AD patients, a group of participants diagnosed with semantic dementia (SD) – showing isolated semantic memory loss – was assessed. Automatic and controlled semantic word retrieval was measured with standard neuropsychological tests and by means of event-related potentials (ERP) recorded during the performance of a semantic priming (SP) paradigm. Special focus was directed to the N400 or N400-LPC (late positive component) complex, an ERP that is sensitive to the semantic word retrieval. In both studies, data driven topographical analyses were applied. Furthermore, in the patient study, the combination of the individual baseline cerebral blood flow (CBF) with the N400 topography of each participant was employed in order to relate altered functional electrophysiology to the pathophysiology of dementia. Results of the aging study revealed that the automatic semantic word retrieval remains stable during healthy aging, the N400-LPC complex showed a comparable topography in contrast to the young participants. Both patient groups showed automatic SP to some extent, but strikingly the ERP topographies were altered compared to healthy controls. Most importantly, the N400 was identified as a putative marker for dementia. In particular, the degree of the topographical N400 similarity was demonstrated to separate healthy elderly from demented patients. Furthermore, the marker was significantly related to baseline CBF reduction in brain areas relevant for semantic word retrieval. Summing up, the first major finding of the present thesis was that all groups showed semantic priming, but that the N400 topography differed significantly between healthy and demented elderly. The second major contribution was the identification of the N400 similarity as a putative marker for dementia. To conclude, the present thesis added evidence of preserved automatic processing during healthy aging. Moreover, a possible marker which might contribute to an improved diagnosis and lead consequently to a more effective treatment of dementia was presented and has to be further developed.
Resumo:
To test whether humans can encode words during sleep we played everyday words to men while they were napping and assessed priming from sleep played words following waking. Words were presented during non rapid eye movement (NREM) sleep. Priming was assessed using a semantic and a perceptual priming test. These tests measured differences in the proces sing of words that had been or had not been played during sleep. Synonyms to sleep played words were the targets in the semantic priming test that tapped the meaning of sleep played words. All men responded to sleep played words by producing up states in their electroencephalogram. Up states are NREM sleep specific phases of briefly increased neuronal excitability. The word evoked up states might have promoted word processing during sleep. Yet, the mean performance in the priming tests administered following sleep was at chance level, which suggests that participants as a group failed to show priming following sleep. However, performance in the two priming tests was positively correlated to each other and to the magnitude of the word evoked up states. Hence, the larger a participant’s word evoked up states, the larger his perceptual and semantic priming. Those participants who scored high on all variables must have encoded words during sleep. We conclude that some humans are able to encode words during sleep, but more research is needed to pin down the factors that modulate this ability.
Resumo:
Background: Semantic memory processes have been well described in literature. However, the available findings are mostly based on relatively young subjects and concrete word material (e.g. tree). Comparatively little information exists about semantic memory for abstract words (e.g. mind) and possible age related changes in semantic retrieval. In this respect, we developed a paradigm that is useful to investigate the implicit (i.e. attentionindependent) access to concrete and abstract semantic memory. These processes were then compared between young and elderly healthy subjects. Methods: A well established tool for investigating semantic memory processes is the semantic priming paradigm, which consists both of semantically unrelated and related word pairs. In our behavioral task these noun-noun word pairs were further divided into concrete, abstract and matched pronounceable non-word conditions. With this premise, the young and elderly participants performed a lexical decision task: they were asked to press a choice of two buttons as an indication for whether the word pair contained a non-word or not. In order to minimize controlled (i.e. attention-dependent) retrieval strategies, a short stimulus onset asynchrony (SOA) of 150ms was set. Reaction time (RT) changes and accuracy to related and unrelated words (priming effect) in the abstract vs. concrete condition (concreteness effect) were the dependent variables of interest. Results and Discussion: Statistical analysis confirmed both a significant priming effect (i.e. shorter RTs in semantically related compared to unrelated words) and a concreteness effect (i.e. RT decrease for concrete compared to abstract words) in the young and elderly subjects. There was no age difference in accuracy. The only age effect was a commonly known general slowing in RT over all conditions. In conclusion, age is not a critical factor in the implicit access to abstract and concrete semantic memory.