56 resultados para remote cameras
Resumo:
Urban agriculture is a phenomenon that can be observed world-wide, particularly in cities of devel-oping countries. It is contributing significantly to food security and food safety and has sustained livelihood of the urban and peri-urban low income dwellers in developing countries for many years. Population increase due to rural-urban migration and natural, coupled with formal as well as infor-mal urbanization are competing with urban farming for available space and scarce water resources. A multitemporal multisensoral urban change analysis over the period of 25 years (1982-2007) was performed in order to measure and visualize the urban expansion along the Kizinga and Mzinga valley in the South of Dar es Salaam. Airphotos and VHR satellite data were analyzed by using a combination of a composition of anisotropic textural measures and spectral information. The study revealed that unplanned built-up area is expanding continuously and vegetation covers and agricultural lands decline at a fast rate. The validation showed that the overall classification accuracy varied depending on the database. The extracted built-up areas were used for visual in-terpretation mapping purposes and served as information source for another research project. The maps visualize an urban congestion and expansion of nearly 18% of the total analyzed area that had taken place in the Kizinga valley between 1982 and 2007. The same development can be ob-served in the less developed and more remote Mzinga valley between 1981 and 2002. Both areas underwent fast changes where land prices still tend to go up and an influx of people both from rural and urban areas continuously increase density with the consequence of increasing multiple land use interests.
Resumo:
Facilitation is a major force shaping the structure and diversity of plant communities in terrestrial ecosystems. Detecting positive plant–plant interactions relies on the combination of field experimentation and the demonstration of spatial association between neighboring plants. This has often restricted the study of facilitation to particular sites, limiting the development of systematic assessments of facilitation over regional and global scales. Here we explore whether the frequency of plant spatial associations detected from high-resolution remotely sensed images can be used to infer plant facilitation at the community level in drylands around the globe. We correlated the information from remotely sensed images freely available through Google Earth with detailed field assessments, and used a simple individual-based model to generate patch-size distributions using different assumptions about the type and strength of plant–plant interactions. Most of the patterns found from the remotely sensed images were more right skewed than the patterns from the null model simulating a random distribution. This suggests that the plants in the studied drylands show stronger spatial clustering than expected by chance. We found that positive plant co-occurrence, as measured in the field, was significantly related to the skewness of vegetation patch-size distribution measured using Google Earth images. Our findings suggest that the relative frequency of facilitation may be inferred from spatial pattern signals measured from remotely sensed images, since facilitation often determines positive co-occurrence among neighboring plants. They pave the road for a systematic global assessment of the role of facilitation in terrestrial ecosystems. Read More: http://www.esajournals.org/doi/10.1890/14-2358.1
Resumo:
A new methodology based on combining active and passive remote sensing and simultaneous and collocated radiosounding data to study the aerosol hygroscopic growth effects on the particle optical and microphysical properties is presented. The identification of hygroscopic growth situations combines the analysis of multispectral aerosol particle backscatter coefficient and particle linear depolarization ratio with thermodynamic profiling of the atmospheric column. We analyzed the hygroscopic growth effects on aerosol properties, namely the aerosol particle backscatter coefficient and the volume concentration profiles, using data gathered at Granada EARLINET station. Two study cases, corresponding to different aerosol loads and different aerosol types, are used for illustrating the potential of this methodology. Values of the aerosol particle backscatter coefficient enhancement factors range from 2.1 ± 0.8 to 3.9 ± 1.5, in the ranges of relative humidity 60–90 and 40–83%, being similar to those previously reported in the literature. Differences in the enhancement factor are directly linked to the composition of the atmospheric aerosol. The largest value of the aerosol particle backscatter coefficient enhancement factor corresponds to the presence of sulphate and marine particles that are more affected by hygroscopic growth. On the contrary, the lowest value of the enhancement factor corresponds to an aerosol mixture containing sulphates and slight traces of mineral dust. The Hänel parameterization is applied to these case studies, obtaining results within the range of values reported in previous studies, with values of the γ exponent of 0.56 ± 0.01 (for anthropogenic particles slightly influenced by mineral dust) and 1.07 ± 0.01 (for the situation dominated by anthropogenic particles), showing the convenience of this remote sensing approach for the study of hygroscopic effects of the atmospheric aerosol under ambient unperturbed conditions. For the first time, the retrieval of the volume concentration profiles for these cases using the Lidar Radiometer Inversion Code (LIRIC) allows us to analyze the aerosol hygroscopic growth effects on aerosol volume concentration, observing a stronger increase of the fine mode volume concentration with increasing relative humidity.
Resumo:
We present observations of total cloud cover and cloud type classification results from a sky camera network comprising four stations in Switzerland. In a comprehensive intercomparison study, records of total cloud cover from the sky camera, long-wave radiation observations, Meteosat, ceilometer, and visual observations were compared. Total cloud cover from the sky camera was in 65–85% of cases within ±1 okta with respect to the other methods. The sky camera overestimates cloudiness with respect to the other automatic techniques on average by up to 1.1 ± 2.8 oktas but underestimates it by 0.8 ± 1.9 oktas compared to the human observer. However, the bias depends on the cloudiness and therefore needs to be considered when records from various observational techniques are being homogenized. Cloud type classification was conducted using the k-Nearest Neighbor classifier in combination with a set of color and textural features. In addition, a radiative feature was introduced which improved the discrimination by up to 10%. The performance of the algorithm mainly depends on the atmospheric conditions, site-specific characteristics, the randomness of the selected images, and possible visual misclassifications: The mean success rate was 80–90% when the image only contained a single cloud class but dropped to 50–70% if the test images were completely randomly selected and multiple cloud classes occurred in the images.
Resumo:
An efficient and reliable automated model that can map physical Soil and Water Conservation (SWC) structures on cultivated land was developed using very high spatial resolution imagery obtained from Google Earth and ArcGIS, ERDAS IMAGINE, and SDC Morphology Toolbox for MATLAB and statistical techniques. The model was developed using the following procedures: (1) a high-pass spatial filter algorithm was applied to detect linear features, (2) morphological processing was used to remove unwanted linear features, (3) the raster format was vectorized, (4) the vectorized linear features were split per hectare (ha) and each line was then classified according to its compass direction, and (5) the sum of all vector lengths per class of direction per ha was calculated. Finally, the direction class with the greatest length was selected from each ha to predict the physical SWC structures. The model was calibrated and validated on the Ethiopian Highlands. The model correctly mapped 80% of the existing structures. The developed model was then tested at different sites with different topography. The results show that the developed model is feasible for automated mapping of physical SWC structures. Therefore, the model is useful for predicting and mapping physical SWC structures areas across diverse areas.
Resumo:
We have designed and built a laboratory facility to investigate the spectro-photometric and morphologic properties of different types of ice-bearing planetary surface analogs and follow their evolution upon exposure to a low pressure and low temperature environment. The results obtained with this experiment are used to verify and improve our interpretations of current optical remote-sensing datasets. They also provide valuable information for the development and operation of future optical instruments. The Simulation Chamber for Imaging the Temporal Evolution of Analogue Samples (SCITEAS) is a small thermal vacuum chamber equipped with a variety of ports and feedthroughs that permit both in-situ and remote characterizations as well as interacting with the sample. A large quartz window located directly above the sample is used to observe its surface from outside with a set of visible and near-infrared cameras. The sample holder can be easily and quickly inserted and removed from the chamber and is compatible with the other measurement facilities of the Laboratory for Outflow Studies of Sublimating Materials (LOSSy) at the University of Bern. We report here on the results of two of the first experiments performed in the SCITEAS chamber. In the first experiment, fine-grained water ice mixed with dark organic and mineral matter was left to sublime in vacuum and at low temperature, simulating the evolution of the surface of a comet nucleus approaching the Sun. We observed and characterized the formation and evolution of a crust of refractory organic and mineral matter at the surface of the sample and linked the evolution of its structure and texture to its spectro-photometric properties. In the second experiment, a frozen soil was prepared by freezing a mixture of smectite mineral and water. The sample was then left to sublime for 6 h to simulate the loss of volatiles from icy soil at high latitudes on Mars. Colour images were produced using the definitions of the filters foreseen for the CaSSIS imager of the Exomars/TGO mission in order to prepare future science operations.