70 resultados para rational mechanics
Resumo:
The past decades have seen a rapid increase in the understanding of plant morphogenesis at the molecular-genetic level. However, the control of growth and morphogenesis by molecular and signaling networks ultimately requires the coordinated regulation of mechanical properties in individual cells. There is also increasing evidence that mechanical stresses can feedback on hormone signaling and growth, and may have a central role in developmental patterning. Thus the development of techniques to investigate the mechanical properties of plant tissue at the cellular level is key to understanding growth and morphogenesis.
Resumo:
BACKGROUND Osteochondral autograft transfer (OAT) aims at restoring normal articular cartilage surface geometry and articular contact mechanics. To date, no studies have evaluated the contact mechanics of the canine stifle following OAT. Additionally, there are no studies that evaluated the role of the meniscus in contact mechanics following OAT in human or canine femorotibial joints. The objective of this study was to measure the changes in femorotibial contact areas (CA), mean contact pressure (MCP) and peak contact pressure (PCP) before and after osteochondral autograft transplantation (OAT) of a simulated lateral femoral condylar cartilage defect with an intact lateral meniscus and following lateral meniscectomy. RESULTS With an intact lateral meniscus, creation of an osteochondral defect caused a decrease in MCP and PCP by 11% and 30%, respectively, compared to the intact stifle (p < 0.01). With an intact meniscus, implanting an osteochondral graft restored MCP and PCP to 96% (p = 0.56) and 92% (p = 0.41) of the control values. Lateral meniscectomy with grafting decreased CA by 54% and increased PCP by 79% compared to the intact stifle (p < 0.01). CONCLUSIONS OAT restored contact pressures in stifles with a simulated lateral condylar defect when the meniscus was intact. The lateral meniscus has a significant role in maintaining normal contact pressures in both stifles with a defect or following OAT. Meniscectomy should be avoided when a femoral condylar defect is present and when performing OAT.
Resumo:
Der oft postulierte Zusammenhang zwischen sozialer Schichtung und Kriminalität ist weder theoretisch abgesichert noch empirisch eindeutig belegt. Ausgehend von der ökonomischen Theorie Gary S. Beckers wird ein erweitertes Modell kriminellen Handelns entwickelt, welches den Einfluss der Schichtzugehörigkeit auf die subjektive Wahrnehmung von Kosten, Nutzen und Entdeckungs-bzw. Erfolgswahrscheinlichkeit krimineller Handlungsalternativen einbezieht. Ferner werden die ebenfalls über die Klassenlage determinierten Anreize (Gelegenheitsstrukturen) und die Internalisierung von Normen („framing“) in das ökonomische Modell integriert. Das Modell wird anhand von Daten aus dem ALLBUS 1990 und 2000 für die Delikte Ladendiebstahl und Steuerbetrug überprüft. Entsprechend den theoretischen Erwartungen kann kein genereller negativer Zusammenhang zwischen Schichtzugehörigkeit und kriminellem Handeln festgestellt werden, wohl aber ein Zusammenhang zwischen Klassenlage und Delikttyp. Sozialstrukturell divergierende Erwartungen hinsichtlich Erfolg einer kriminellen Handlung und Gelegenheitsstrukturen sind bedeutsamer für die Wahl illegaler Handlungsalternativen als Abschreckung durch Strafe oder erwarteter Nutzen aus der Tat. Internalisierte Normvorstellungen machen kriminelle Handlungsalternativen unwahrscheinlich.
Resumo:
Statistical physicists assume a probability distribution over micro-states to explain thermodynamic behavior. The question of this paper is whether these probabilities are part of a best system and can thus be interpreted as Humean chances. I consider two strategies, viz. a globalist as suggested by Loewer, and a localist as advocated by Frigg and Hoefer. Both strategies fail because the system they are part of have rivals that are roughly equally good, while ontic probabilities should be part of a clearly winning system. I conclude with the diagnosis that well-defined micro-probabilities under-estimate the robust character of explanations in statistical physics.
Resumo:
We consider the Schrödinger equation for a relativistic point particle in an external one-dimensional δ-function potential. Using dimensional regularization, we investigate both bound and scattering states, and we obtain results that are consistent with the abstract mathematical theory of self-adjoint extensions of the pseudodifferential operator H=p2+m2−−−−−−−√. Interestingly, this relatively simple system is asymptotically free. In the massless limit, it undergoes dimensional transmutation and it possesses an infrared conformal fixed point. Thus it can be used to illustrate nontrivial concepts of quantum field theory in the simpler framework of relativistic quantum mechanics.
Resumo:
We derive the fermion loop formulation of N=4 supersymmetric SU(N) Yang-Mills quantum mechanics on the lattice. The loop formulation naturally separates the contributions to the partition function into its bosonic and fermionic parts with fixed fermion number and provides a way to control potential fermion sign problems arising in numerical simulations of the theory. Furthermore, we present a reduced fermion matrix determinant which allows the projection into the canonical sectors of the theory and hence constitutes an alternative approach to simulate the theory on the lattice.
Resumo:
Simulations of supersymmetric field theories on the lattice with (spontaneously) broken supersymmetry suffer from a fermion sign problem related to the vanishing of the Witten index. We propose a novel approach which solves this problem in low dimensions by formulating the path integral on the lattice in terms of fermion loops. For N=2 supersymmetric quantum mechanics the loop formulation becomes particularly simple and in this paper – the first in a series of three – we discuss in detail the reformulation of this model in terms of fermionic and bosonic bonds for various lattice discretisations including one which is Q-exact.