51 resultados para qrt-pcr
Resumo:
Neospora caninum represents one of the most frequent abortifaciant organisms worldwide. The parasite is diaplacentally transmitted from the pregnant cow to the fetus, where it normally leads to the delivery of a healthy, however persistently infected calf. Abortion thus is a relative rare event. The transmission of bovine neosporosis occurs in more than 90% of the cases vertically due to the endogenous reactivation of a persistently infected mother. Exogenous infections are therefore responsible for less than 10% of the cases.The question arises about which infection sources may be relevant in this context. In Switzerland, the role of dogs as definitive hosts has been shown to be of low significance in that respect. Recently, discussion focused on the potential of infectious bull semen following natural or artificial insemination. Thus, a few years ago a report documented the detectability of N. caninum-DNA in the semen of naturally infected bulls by nested-PCR. As a consequence, we decided to gain own experience by investigating 5 separate semen specimens per animal, originating from 20 N. caninum-seropositive bulls used for artificial insemination in Switzerland. All probes turned out to be negative by nested PCR. Based upon our laboratory experiences, the potential bull semen-associated Neospora-problem seems not to affect the Swiss bull population, thus there is no evidence to include further respective means of control.
Resumo:
A nested PCR that successfully detected Neospora caninum DNA in serum of cattle was used for investigation of selected abortion cases and in a study of healthy pregnant cows at an abattoir. N. caninum DNA was not detected in serum from antibody positive dams that aborted due to N. caninum, but was present in serum of some antibody negative dams that aborted due to other causes. N. caninum DNA was also found in the serum of about half of the animals that aborted of undetermined cause, but was not detected in cow sera from two beef cattle herds in Western Australia with no recent history of abortion. In the abattoir study of 79 dams and their foetuses N. caninum DNA was found in serum of 3 dams and in material from 11 foetuses. The majority of the cows and all foetuses were antibody negative. Our findings suggest that there is no obvious relationship between the presence or absence of N. caninum DNA in serum and the presence of antibodies to N. caninum in dams, the presence of N. caninum DNA in foetuses or abortion due to N. caninum. This is the first report of the detection of N. caninum DNA in serum of cattle rather than the white blood cell fraction. It indicates the presence of free tachyzoites and/or parasite DNA in circulation. The results suggest that persistent infection in the absence of antibodies is a possible outcome of N. caninum infection. Infection of foetuses in the absence of antibodies supports the possibility of persistent infection due to immunotolerance to an early in utero infection. It is therefore important to test for N. caninum DNA as well as antibodies for the detection of exposed and/or infected animals. However, the presence or absence of N. caninum antibodies or DNA did not support nor exclude N. caninum as the cause of abortion. Additional criteria are required for a positive diagnosis of abortion caused by N. caninum.
Resumo:
Here we determined the analytical sensitivities of broad-range real-time PCR-based assays employing one of three different genomic DNA extraction protocols in combination with one of three different primer pairs targeting the 16S rRNA gene to detect a panel of 22 bacterial species. DNA extraction protocol III, using lysozyme, lysostaphin, and proteinase K, followed by PCR with the primer pair Bak11W/Bak2, giving amplicons of 796 bp in length, showed the best overall sensitivity, detecting DNA of 82% of the strains investigated at concentrations of < or =10(2) CFU in water per reaction. DNA extraction protocols I and II, using less enzyme treatment, combined with other primer pairs giving shorter amplicons of 466 bp and 342 or 346 bp, respectively, were slightly more sensitive for the detection of gram-negative but less sensitive for the detection of gram-positive bacteria. The obstacle of detecting background DNA in blood samples spiked with bacteria was circumvented by introducing a broad-range hybridization probe, and this preserved the minimal detection limits observed in samples devoid of blood. Finally, sequencing of the amplicons generated using the primer pair Bak11W/Bak2 allowed species identification of the detected bacterial DNA. Thus, broad-spectrum PCR targeting the 16S rRNA gene in the quantitative real-time format can achieve an analytical sensitivity of 1 to 10 CFU per reaction in water, avoid detection of background DNA with the introduction of a broad-range probe, and generate amplicons that allow species identification of the detected bacterial DNA by sequencing. These prerequisites are important for its application to blood-containing patient samples.
Resumo:
Infectious keratoconjunctivitis (IKC), caused by Mycoplasma conjunctivae, is a highly contagious ocular disease in Caprinae. To detect rapidly and sensitively M. conjunctivae from individual conjunctival swabs of infected domestic and wild animals, a specific real-time PCR was developed using an lppS-directed hydrolysis probe in a TaqMan platform.
Resumo:
The association of simian virus 40 (SV40) with malignant pleural mesothelioma is currently under debate. In some malignancies of viral aetiology, viral DNA can be detected in the patients' serum or plasma. To characterize the prevalence of SV40 in Swiss mesothelioma patients, we optimized a real-time PCR for quantitative detection of SV40 DNA in plasma, and used a monoclonal antibody for immunohistochemical detection of SV40 in mesothelioma tissue microarrays. Real-time PCR was linear over five orders of magnitude, and sensitive to a single gene copy. Repeat PCR determinations showed excellent reproducibility. However, SV40 status varied for independent DNA isolates of single samples. We noted that SV40 detection rates by PCR were drastically reduced by the implementation of strict room compartmentalization and decontamination procedures. Therefore, we systematically addressed common sources of contamination and found no cross-reactivity with DNA of other polyomaviruses. Contamination during PCR was rare and plasmid contamination was infrequent. SV40 DNA was reproducibly detected in only 4 of 78 (5.1%) plasma samples. SV40 DNA levels were low and not consistently observed in paired plasma and tumour samples from the same patient. Immunohistochemical analysis revealed a weak but reproducible SV40 staining in 16 of 341 (4.7%) mesotheliomas. Our data support the occurrence of non-reproducible SV40 PCR amplifications and underscore the importance of proper sample handling and analysis. SV40 DNA and protein were found at low prevalence (5%) in plasma and tumour tissue, respectively. This suggests that SV40 does not appear to play a major role in the development of mesothelioma.