47 resultados para promoter SNP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The susceptibility of humans to the variant Creutzfeldt-Jakob disease is greatly influenced by polymorphisms within the human prion protein gene (PRNP). Similar genetic differences exist in sheep, in which PRNP polymorphisms modify the susceptibility to scrapie. However, the known coding polymorphisms within the bovine PRNP gene have little or no effect on bovine spongiform encephalopathy (BSE) susceptibility in cattle. We have recently found a tentative association between PRNP promoter polymorphisms and BSE susceptibility in German cattle (Sander, P., Hamann, H., Pfeiffer, I., Wemheuer, W., Brenig, B., Groschup, M., Ziegler, U., Distl, O., and Leeb, T. (2004) Neurogenetics 5, 19-25). A plausible hypothesis explaining this observation could be that the bovine PRNP promoter polymorphisms cause changes in PRNP expression that might be responsible for differences in BSE incubation time and/or BSE susceptibility. To test this hypothesis, we performed a functional promoter analysis of the different bovine PRNP promoter alleles by reporter gene assays in vitro and by measuring PRNP mRNA levels in calves with different PRNP genotypes in vivo. Two variable sites, a 23-bp insertion/deletion (indel) polymorphism containing a RP58-binding site and a 12-bp indel polymorphism containing an SP1-binding site, were investigated. Band shift assays indicated differences in transcription factor binding to the different alleles at the two polymorphisms. Reporter gene assays demonstrated an interaction between the two postulated transcription factors and lower expression levels of the ins/ins allele compared with the del/del allele. The in vivo data revealed substantial individual variation of PRNP expression in different tissues. In intestinal lymph nodes, expression levels differed between the different PRNP genotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the blood meal of a Plasmodium-infected mosquito, 10 to 100 parasites are inoculated into the skin and a proportion of these migrate via the bloodstream to the liver where they infect hepatocytes. The Plasmodium liver stage, despite its clinical silence, represents a highly promising target for antimalarial drug and vaccine approaches. Successfully invaded parasites undergo a massive proliferation in hepatocytes, producing thousands of merozoites that are transported into a blood vessel to infect red blood cells. To successfully develop from the liver stage into infective merozoites, a tight regulation of gene expression is needed. Although this is a very interesting aspect in the biology of Plasmodium, little is known about gene regulation in Plasmodium parasites in general and in the liver stage in particular. We have functionally analyzed a novel promoter region of the rodent parasite Plasmodium berghei that is exclusively active during the liver stage of the parasite. To prove stage-specific activity of the promoter, GFP and luciferase reporter assays have been successfully established, allowing both qualitative and accurate quantitative analysis. To further characterize the promoter region, the transcription start site was mapped by rapid amplification of cDNA ends (5'-RACE). Using promoter truncation experiments and site-directed mutagenesis within potential transcription factor binding sites, we suggest that the minimal promoter contains more than one binding site for the recently identified parasite-specific ApiAP2 transcription factors. The identification of a liver stage-specific promoter in P. berghei confirms that the parasite is able to tightly regulate gene expression during its life cycle. The identified promoter region might now be used to study the biology of the Plasmodium liver stage, which has thus far proven problematic on a molecular level. Stage-specific expression of dominant-negative mutant proteins and overexpression of proteins normally active in other life cycle stages will help to understand the function of the proteins investigated.