107 resultados para product variant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A systematic comparison has been performed of the morphology and stability of microtubules (MTs) induced by the potent microtubule-stabilizing agents (MSAs) taxol, epothilone B (Epo B), and discodermolide (DDM) under GTP-free conditions. DDM-induced tubulin polymerization occurred significantly faster than that induced by taxol and Epo B. At the same time, tubulin polymers assembled from soluble tubulin by DDM were morphologically distinct (shorter and less ordered) from those induced by either taxol or Epo B, as demonstrated by electron microscopy. Exposure of MSA-induced tubulin polymers to ultrasound revealed the DDM-based polymers to be less stable to this type of physical stress than those formed with either Epo B or taxol. Interestingly, MT assembly in the presence of both DDM and taxol appeared to produce a distinct new type of MT polymer with a mixed morphology between those of DDM- and taxol-induced structures. The observed differences in MT morphology and stability might be related, at least partly, to differences in intramicrotubular tubulin isotype distribution, as DDM showed a different pattern of beta-tubulin isotype usage in the assembly process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apoptosis is essential to eliminate secretory epithelial cells during the involution of the mammary gland. The environmental regulation of this process is however, poorly understood. This study tested the effect of HAMLET (human alpha-lactalbumin made lethal to tumor cells) on mammary cells. Plastic pellets containing HAMLET were implanted into the fourth inguinal mammary gland of lactating mice for 3 days. Exposure of mammary tissue to HAMLET resulted in morphological changes typical for apoptosis and in a stimulation of caspase-3 activity in alveolar epithelial cells near the HAMLET pellets but not more distant to the pellet or in contralateral glands. The effect was specific for HAMLET and no effects were observed when mammary glands were exposed to native a-lactalbumin or fatty acid alone. HAMLET also induced cell death in vitro in a mouse mammary epithelial cell line. The results suggest that HAMLET can mediate apoptotic cell death in mammary gland tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study demonstrates how consumers can suffer from sequential overchoice. Customizing a tailor-made suit from combined-attribute choices (e.g., deciding on color and fabric in combination) leads to less satisfaction, more information overload, and less additional consumption than customizing it from single-attribute choices (e.g., deciding on color, then on fabric).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Cardiac sodium channel β-subunit mutations have been associated with several inherited cardiac arrhythmia syndromes. OBJECTIVE To identify and characterize variations in SCN1Bb associated with Brugada syndrome (BrS) and sudden infant death syndrome (SIDS). METHODS All known exons and intron borders of the BrS-susceptibility genes were amplified and sequenced in both directions. Wild type (WT) and mutant genes were expressed in TSA201 cells and studied using co-immunoprecipitation and whole-cell patch-clamp techniques. RESULTS Patient 1 was a 44-year-old man with an ajmaline-induced type 1 ST-segment elevation in V1 and V2 supporting the diagnosis of BrS. Patient 2 was a 62-year-old woman displaying a coved-type BrS electrocardiogram who developed cardiac arrest during fever. Patient 3 was a 4-month-old female SIDS case. A R214Q variant was detected in exon 3A of SCN1Bb (Na(v)1B) in all three probands, but not in any other gene previously associated with BrS or SIDS. R214Q was identified in 4 of 807 ethnically-matched healthy controls (0.50%). Co-expression of SCN5A/WT + SCN1Bb/R214Q resulted in peak sodium channel current (I(Na)) 56.5% smaller compared to SCN5A/WT + SCN1Bb/WT (n = 11-12, P<0.05). Co-expression of KCND3/WT + SCN1Bb/R214Q induced a Kv4.3 current (transient outward potassium current, I(to)) 70.6% greater compared with KCND3/WT + SCN1Bb/WT (n = 10-11, P<0.01). Co-immunoprecipitation indicated structural association between Na(v)β1B and Na(v)1.5 and K(v)4.3. CONCLUSION Our results suggest that R214Q variation in SCN1Bb is a functional polymorphism that may serve as a modifier of the substrate responsible for BrS or SIDS phenotypes via a combined loss of function of sodium channel current and gain of function of transient outward potassium current.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The SNTA1-encoded α1-syntrophin (SNTA1) missense mutation, p.A257G, causes long QT syndrome (LQTS) by pathogenic accentuation of Nav1.5's sodium current (I Na). Subsequently, we found p.A257G in combination with the SNTA1 polymorphism, p.P74L in 4 victims of sudden infant death syndrome (SIDS) as well as in 3 adult controls. We hypothesized that p.P74L-SNTA1 could functionally modify the pathogenic phenotype of p.A257G-SNTA1, thus explaining its occurrence in non-LQTS populations. The SNTA1 variants p.P74L, p.A257G, and the combination variant p.P74L/p.A257G were engineered using PCR-based overlap-extension and were co-expressed heterologously with SCN5A in HEK293 cells. I Na was recorded using the whole-cell method. Compared to wild-type (WT), the significant increase in peak I Na and window current found with p.A257G was reversed by the intragenic variant p.P74L (p.P74L/p.A257G). These results report for the first time the intragenic rescue of an LQT-associated SNTA1 mutation when found in combination with the SNTA1 polymorphism p.P74L, suggesting an ever-increasing picture of complexity in terms of genetic risk stratification for arrhythmia.