58 resultados para plasma cell


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foreign mRNA was expressed in Xenopus laevis oocytes. Newly expressed ion currents localized in defined plasma membrane areas were measured using the two-electrode voltage clamp technique in combination with a specially designed chamber, that exposed only part of the surface on the oocytes to channel agonists or inhibitors. Newly expressed currents were found to be unequally distributed in the surface membrane of the oocyte. This asymmetry was most pronounced during the early phase of expression, when channels could almost exclusively be detected in the animal hemisphere of the oocyte. 4 d after injection of the mRNA, or later, channels could be found at a threefold higher density at the animal than at the vegetal pole area. The pattern of distribution was observed to be similar with various ion channels expressed from crude tissue mRNA and from cRNAs coding for rat GABAA receptor channel subunits. Electron microscopical analysis revealed very similar microvilli patterns at both oocyte pole areas. Thus, the asymmetric current distribution is not due to asymmetric surface structure. Upon incubation during the expression period in either colchicine or cytochalasin D, the current density was found to be equal in both pole areas. The inactive control substance beta-lumicolchicine had no effect on the asymmetry of distribution. Colchicine was without effect on the amplitude of the expressed whole cell current. Our measurements reveal a pathway for plasma membrane protein expression endogenous to the Xenopus oocyte, that may contribute to the formation and maintenance of polarity of this highly organized cell.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotic cells have developed repair mechanisms, which allow them to reseal their membrane in order to prevent the efflux of cytoplasmic constituents and the uncontrolled influx of calcium. After injury, the Ca(2+)-concentration gradient fulfils a dual function: it provides guidance cues for the repair machinery and directly activates the molecules, which have a repair function. Depending on the nature of injury, the morphology of the cell and the severity of injury, the membrane resealing can be effected by lysosomal exocytosis, microvesicle shedding or a combination of both. Likewise, exocytosis is often followed by the endocytic uptake of lesions. Additionally, since plasmalemmal resealing must be attempted, even after extensive injury in order to prevent cell lysis, the restoration of membrane integrity can be achieved by ceramide-driven invagination of the lipid bilayer, during which the cell is prepared for apoptotic disposal. Plasmalemmal injury can be contained by a surfeit of plasma membrane, which serves as a trap for toxic substances: either passively by an abundance of cellular protrusions, or actively by membrane blebbing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Platelet concentrates for topical and infiltrative use - commonly termed Platetet-Rich Plasma (PRP) or Platelet-Rich Fibrin (PRF) - are used or tested as surgical adjuvants or regenerative medicine preparations in most medical fields, particularly in sports medicine and orthopaedic surgery. Even if these products offer interesting therapeutic perspectives, their clinical relevance is largely debated, as the literature on the topic is often confused and contradictory. The long history of these products was always associated with confusions, mostly related to the lack of consensual terminology, characterization and classification of the many products that were tested in the last 40 years. The current consensus is based on a simple classification system dividing the many products in 4 main families, based on their fibrin architecture and cell content: Pure Platelet-Rich Plasma (P-PRP), such as the PRGF-Endoret technique; Leukocyte- and Platelet-Rich Plasma (LPRP), such as Biomet GPS system; Pure Platelet-Rich Fibrin (P-PRF), such as Fibrinet; Leukocyte- and Platelet-Rich Fibrin (L-PRF), such as Intra-Spin L-PRF. The 4 main families of products present different biological signatures and mechanisms, and obvious differences for clinical applications. This classification serves as a basis for further investigations of the effects of these products. Perspectives of evolutions of this classification and terminology are also discussed, particularly concerning the impact of the cell content, preservation and activation on these products in sports medicine and orthopaedics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent findings in the field of biomaterials and tissue engineering provide evidence that surface immobilised growth factors display enhanced stability and induce prolonged function. Cell response can be regulated by material properties and at the site of interest. To this end, we developed scaffolds with covalently bound vascular endothelial growth factor (VEGF) and evaluated their mitogenic effect on endothelial cells in vitro. Nano- (254±133 nm) or micro-fibrous (4.0±0.4 μm) poly(ɛ-caprolactone) (PCL) non-wovens were produced by electrospinning and coated in a radio frequency (RF) plasma process to induce an oxygen functional hydrocarbon layer. Implemented carboxylic acid groups were converted into amine-reactive esters and covalently coupled to VEGF by forming stable amide bonds (standard EDC/NHS chemistry). Substrates were analysed by X-ray photoelectron spectroscopy (XPS), enzyme-linked immuno-assays (ELISA) and immunohistochemistry (anti-VEGF antibody and VEGF-R2 binding). Depending on the reaction conditions, immobilised VEGF was present at 127±47 ng to 941±199 ng per substrate (6mm diameter; concentrations of 4.5 ng mm(-2) or 33.3 ng mm(-2), respectively). Immunohistochemistry provided evidence for biological integrity of immobilised VEGF. Endothelial cell number of primary endothelial cells or immortalised endothelial cells were significantly enhanced on VEGF-functionalised scaffolds compared to native PCL scaffolds. This indicates a sustained activity of immobilised VEGF over a culture period of nine days. We present a versatile method for the fabrication of growth factor-loaded scaffolds at specific concentrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiac tissue engineering approaches can deliver large numbers of cells to the damaged myocardium and have thus increasingly been considered as a possible curative treatment to counteract the high prevalence of progressive heart failure after myocardial infarction (MI). Optimal scaffold architecture and mechanical and chemical properties, as well as immune- and bio-compatibility, need to be addressed. We demonstrated that radio-frequency plasma surface functionalized electrospun poly(ɛ-caprolactone) (PCL) fibres provide a suitable matrix for bone-marrow-derived mesenchymal stem cell (MSC) cardiac implantation. Using a rat model of chronic MI, we showed that MSC-seeded plasma-coated PCL grafts stabilized cardiac function and attenuated dilatation. Significant relative decreases of 13% of the ejection fraction (EF) and 15% of the fractional shortening (FS) were observed in sham treated animals; respective decreases of 20% and 25% were measured 4 weeks after acellular patch implantation, whereas a steadied function was observed 4 weeks after MSC-patch implantation (relative decreases of 6% for both EF and FS).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increasing production and use of engineered nanoparticles it is crucial that their interaction with biological systems is understood. Due to the small size of nanoparticles, their identification and localization within single cells is extremely challenging. Therefore, various cutting-edge techniques are required to detect and to quantify metals, metal oxides, magnetic, fluorescent, as well as electron-dense nanoparticles. Several techniques will be discussed in detail, such as inductively coupled plasma atomic emission spectroscopy, flow cytometry, laser scanning microscopy combined with digital image restoration, as well as quantitative analysis by means of stereology on transmission electron microscopy images. An overview will be given regarding the advantages of those visualization/quantification systems, including a thorough discussion about limitations and pitfalls.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Even among HIV-infected patients who fully suppress plasma HIV RNA replication on antiretroviral therapy, genetic (e.g. CCL3L1 copy number), viral (e.g. tropism) and environmental (e.g. chronic exposure to microbial antigens) factors influence CD4 recovery. These factors differ markedly around the world and therefore the expected CD4 recovery during HIV RNA suppression may differ globally. METHODS We evaluated HIV-infected adults from North America, West Africa, East Africa, Southern Africa and Asia starting non-nucleoside reverse transcriptase inhibitorbased regimens containing efavirenz or nevirapine, who achieved at least one HIV RNA level <500/ml in the first year of therapy and observed CD4 changes during HIV RNA suppression. We used a piecewise linear regression to estimate the influence of region of residence on CD4 recovery, adjusting for socio-demographic and clinical characteristics. We observed 28 217 patients from 105 cohorts over 37 825 person-years. RESULTS After adjustment, patients from East Africa showed diminished CD4 recovery as compared with other regions. Three years after antiretroviral therapy initiation, the mean CD4 count for a prototypical patient with a pre-therapy CD4 count of 150/ml was 529/ml [95% confidence interval (CI): 517–541] in North America, 494/ml (95% CI: 429–559) in West Africa, 515/ml (95% CI: 508–522) in Southern Africa, 503/ml (95% CI: 478–528) in Asia and 437/ml (95% CI: 425–449) in East Africa. CONCLUSIONS CD4 recovery during HIV RNA suppression is diminished in East Africa as compared with other regions of the world, and observed differences are large enough to potentially influence clinical outcomes. Epidemiological analyses on a global scale can identify macroscopic effects unobservable at the clinical, national or individual regional level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The endocannabinoid (EC) system is implicated in many chronic liver diseases, including hepatitis C viral (HCV) infection. Cannabis consumption is associated with fibrosis progression in patients with chronic hepatitis C (CHC), however, the role of ECs in the development of CHC has never been explored. To study this question, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) were quantified in samples of HCV patients and healthy controls by gas and liquid chromatography mass spectrometry. Fatty acid amide hydrolase (FAAH) and monoaclyglycerol lipase (MAGL) activity was assessed by [3H]AEA and [3H]2-AG hydrolysis, respectively. Gene expression and cytokine release were assayed by TaqMan PCR and ELISpot, respectively. AEA and 2-AG levels were increased in plasma of HCV patients, but not in liver tissues. Hepatic FAAH and MAGL activity was not changed. In peripheral blood mononuclear cells (PBMC), ECs inhibited IFN-γ, TNF-α, and IL-2 secretion. Inhibition of IL-2 by endogenous AEA was stronger in PBMC from HCV patients. In hepatocytes, 2-AG induced the expression of IL-6, -17A, -32 and COX-2, and enhanced activation of hepatic stellate cells (HSC) co-cultivated with PBMC from subjects with CHC. In conclusion, ECs are increased in plasma of patients with CHC and might reveal immunosuppressive and profibrogenic effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunoglobulin A deficiency (IgAD) is the most common primary immune deficiency disorder in both humans and dogs, characterized by recurrent mucosal tract infections and a predisposition for allergic and other immune mediated diseases. In several dog breeds, low IgA levels have been observed at a high frequency and with a clinical resemblance to human IgAD. In this study, we used genome-wide association studies (GWAS) to identify genomic regions associated with low IgA levels in dogs as a comparative model for human IgAD. We used a novel percentile groups-approach to establish breed-specific cut-offs and to perform analyses in a close to continuous manner. GWAS performed in four breeds prone to low IgA levels (German shepherd, Golden retriever, Labrador retriever and Shar-Pei) identified 35 genomic loci suggestively associated (p <0.0005) to IgA levels. In German shepherd, three genomic regions (candidate genes include KIRREL3 and SERPINA9) were genome-wide significantly associated (p <0.0002) with IgA levels. A ~20kb long haplotype on CFA28, significantly associated (p = 0.0005) to IgA levels in Shar-Pei, was positioned within the first intron of the gene SLIT1. Both KIRREL3 and SLIT1 are highly expressed in the central nervous system and in bone marrow and are potentially important during B-cell development. SERPINA9 expression is restricted to B-cells and peaks at the time-point when B-cells proliferate into antibody-producing plasma cells. The suggestively associated regions were enriched for genes in Gene Ontology gene sets involving inflammation and early immune cell development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES Previous studies concluded that haemorrhage is one of the most accurate prognostic factors of mortality in leptospirosis. Therefore, endothelial cell activation was investigated in relation to disease severity in severe leptospirosis. METHODS Prospective cohort study of severe leptospirosis patients. Plasma levels of sE-selectin and Von Willebrand factor (VWF) were determined. Consequently, an in vitro endothelial cell model was used to assess endothelial activation after exposure to virulent Leptospira. Finally, immune activation, as a potential contributing factor to endothelial cell activation, was determined by soluble IL2-receptor (sIL-2r) and soluble Fas-ligand (sFasL) levels. RESULTS Plasma levels of sE-selectin and VWF strongly increased in patients compared to healthy controls. Furthermore, sE-selectin was significantly elevated (203 ng/ml vs. 157 ng/ml, p < 0.05) in survivors compared to non-survivors. Endothelial cells exposed to virulent Leptospira showed increased VWF expression. E-selectin and ICAM-1 expression did not change. Immunohistochemistry revealed the presence of intracellular Leptospira and qPCR suggested replication. In vivo analysis showed that increased levels of sFasL and sIL-2r were both strongly associated with mortality. Furthermore sIL-2r levels were increased in patients that developed bleeding and significantly correlated to duration of hospital stay. DISCUSSION Markers of endothelial activation and immune activation were associated with disease severity in leptospirosis patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Platelet-rich concentrates are used as a source of growth factors to improve the healing process. The diverse preparation protocols and the gaps in knowledge of their biological properties complicate the interpretation of clinical results. QUESTIONS/PURPOSES In this study we aimed to (1) analyze the concentration and kinetics of growth factors released from leukocyte- and platelet-rich fibrin (L-PRF), leukocyte- and platelet-rich plasma (L-PRP), and natural blood clot during in vitro culture; (2) investigate the migration of mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as a functional response to the factors released; and (3) uncover correlations between individual growth factors with the initial platelet/leukocyte counts or the induced cell migration. METHODS L-PRF, L-PRP, and natural blood clot prepared from 11 donors were cultured in vitro for 28 days and media supernatants collected after 8 hours and 1, 3, 7, 14, and 28 days. Released transforming growth factor β1 (TGF-β1), vascular endothelial growth factor (VEGF), insulin growth factor (IGF-1), platelet-derived growth factor AB (PDGF-AB), and interleukin-1β (IL-1β) were measured in the supernatants with enzyme-linked immunosorbent assay. Migration of MSC and HUVEC induced by the supernatants was evaluated in Boyden chambers. RESULTS More TGF-ß1 was released (mean ± SD in pg/mL of blood) from L-PRF (37,796 ± 5492) compared with L-PRP (23,738 ± 6848; p < 0.001) and blood clot (3739 ± 4690; p < 0.001), whereas more VEGF and IL-1ß were released from blood clot (1933 ± 704 and 2053 ± 908, respectively) compared with both L-PRP (642 ± 208; p < 0.001 and 273 ± 386; p < 0.001, respectively) and L-PRF (852 ± 376; p < 0.001 and 65 ± 56, p < 0.001, respectively). No differences were observed in IGF-1 and PDGF-AB released from any of the concentrates. TGF-β1 release peaked at Day 7 in L-PRF and at 8 hours and Day 7 in L-PRP and 8 hours and Day 14 in blood clot. In all concentrates, main release of VEGF occurred between 3 and 7 days and of IL-1β between Days 1 and 7. IGF-1 and PDGF-AB were released until Day 1 in L-PRP and blood clot, in contrast to sustained release over the first 3 days in L-PRF. The strongest migration of MSC occurred in response to L-PRF, and more HUVEC migration was seen in L-PRF and blood clot compared with L-PRP. TGF-β1 correlated with initial platelet counts in L-PRF (Pearson r = 0.66, p = 0.0273) and initial leukocyte counts in L-PRP (Pearson r = 0.83, p = 0.0016). A positive correlation of IL-1β on migration of MSC and HUVEC was revealed (Pearson r = 0.16, p = 0.0208; Pearson r = 0.31, p < 0.001). CONCLUSIONS In comparison to L-PRP, L-PRF had higher amounts of released TGF-β1, a long-term release of growth factors, and stronger induction of cell migration. Future preclinical studies should confirm these data in a defined injury model. CLINICAL RELEVANCE By characterizing the biologic properties of different platelet concentrates in vitro, we may gain a better understanding of their clinical effects and develop guidelines for specific future applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na(+)- or H(+)-linked myo-inositol transporters. While Na(+)-coupled myo-inositol transporters are found exclusively in the plasma membrane, H(+)-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H(+)-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rodent malaria parasite Plasmodium berghei develops in hepatocytes within 48-52h from a single sporozoite into up to 20,000 daughter parasites, so-called merozoites. The cellular and molecular details of this extensive proliferation are still largely unknown. Here we have used a transgenic, RFP-expressing P. berghei parasite line and molecular imaging techniques including intravital microscopy to decipher various aspects of parasite development within the hepatocyte. In late schizont stages, MSP1 is expressed and incorporated into the parasite plasma membrane that finally forms the membrane of developing merozoites by continuous invagination steps. We provide first evidence for activation of a verapamil-sensitive Ca(2+) channel in the plasma membrane of liver stage parasites before invagination occurs. During merozoite formation, the permeability of the parasitophorous vacuole membrane changes considerably before it finally becomes completely disrupted, releasing merozoites into the host cell cytoplasm.