53 resultados para p-Bromophenacyl bromide inhibitor
Resumo:
Early initiation of everolimus with calcineurin inhibitor therapy has been shown to reduce the progression of cardiac allograft vasculopathy (CAV) in de novo heart transplant recipients. The effect of de novo everolimus therapy and early total elimination of calcineurin inhibitor therapy has, however, not been investigated and is relevant given the morbidity and lack of efficacy of current protocols in preventing CAV. This 12-month multicenter Scandinavian trial randomized 115 de novo heart transplant recipients to everolimus with complete calcineurin inhibitor elimination 7-11 weeks after HTx or standard cyclosporine immunosuppression. Ninety-five (83%) patients had matched intravascular ultrasound examinations at baseline and 12 months. Mean (± SD) recipient age was 49.9 ± 13.1 years. The everolimus group (n = 47) demonstrated significantly reduced CAV progression as compared to the calcineurin inhibitor group (n = 48) (ΔMaximal Intimal Thickness 0.03 ± 0.06 and 0.08 ± 0.12 mm, ΔPercent Atheroma Volume 1.3 ± 2.3 and 4.2 ± 5.0%, ΔTotal Atheroma Volume 1.1 ± 19.2 mm(3) and 13.8 ± 28.0 mm(3) [all p-values ≤ 0.01]). Everolimus patients also had a significantly greater decline in levels of soluble tumor necrosis factor receptor-1 as compared to the calcineurin inhibitor group (p = 0.02). These preliminary results suggest that an everolimus-based CNI-free can potentially be considered in suitable de novo HTx recipients.
Resumo:
In a randomized, open-label trial, everolimus was compared to cyclosporine in 115 de novo heart transplant recipients. Patients were assigned within 5 days posttransplant to low-exposure everolimus (3–6 ng/mL) with reduced-exposure cyclosporine (n = 56), or standard-exposure cyclosporine (n = 59), with both mycophenolate mofetil and corticosteroids. In the everolimus group, cyclosporine was withdrawn after 7–11 weeks and everolimus exposure increased (6–10 ng/mL). The primary efficacy end point, measured GFR at 12 months posttransplant, was significantly higher with everolimus versus cyclosporine (mean ± SD: 79.8 ± 17.7 mL/min/1.73 m2 vs. 61.5 ± 19.6 mL/min/1.73 m2; p < 0.001). Coronary intravascular ultrasound showed that the mean increase in maximal intimal thickness was smaller (0.03 mm [95% CI 0.01, 0.05 mm] vs. 0.08 mm [95% CI 0.05, 0.12 mm], p = 0.03), and the incidence of cardiac allograft vasculopathy (CAV) was lower (50.0% vs. 64.6%, p = 0.003), with everolimus versus cyclosporine at month 12. Biopsy-proven acute rejection after weeks 7–11 was more frequent with everolimus (p = 0.03). Left ventricular function was not inferior with everolimus versus cyclosporine. Cytomegalovirus infection was less common with everolimus (5.4% vs. 30.5%, p < 0.001); the incidence of bacterial infection was similar. In conclusion, everolimus-based immunosuppression with early elimination of cyclosporine markedly improved renal function after heart transplantation. Since postoperative safety was not jeopardized and development of CAV was attenuated, this strategy may benefit long-term outcome.
Resumo:
AIM Predictors of renal recovery following conversion from calcineurin inhibitor- to proliferation signal inhibitor-based therapy are lacking. We hypothesized that plasma NGAL (P-NGAL) could predict improvement in glomerular filtration rate (GFR) after conversion to everolimus. PATIENTS & METHODS P-NGAL was measured in 88 cardiac transplantation patients (median 5 years post-transplant) with renal dysfunction randomized to continuation of conventional calcineurin inhibitor-based immunosuppression or switching to an everolimus-based regimen. RESULTS P-NGAL correlated with measured GFR (mGFR) at baseline (R(2) = 0.21; p < 0.001). Randomization to everolimus improved mGFR after 1 year (median [25-75 % percentiles]: ΔmGFR 5.5 [-0.5-11.5] vs -1 [-7-4] ml/min/1.73 m(2); p = 0.006). Baseline P-NGAL predicted mGFR after 1 year (R(2) = 0.18; p < 0.001), but this association disappeared after controlling for baseline mGFR. CONCLUSION P-NGAL and GFR correlate with renal dysfunction in long-term heart transplantation recipients. P-NGAL did not predict improvement of renal function after conversion to everolimus-based immunosuppression.
Resumo:
Due to the lack of regenerative capacity of the mammalian auditory epithelium, sensory hair cell loss results in permanent hearing deficit. Nevertheless, a population of tissue resident stem/progenitor cells has been recently described. Identification of methods to trigger their activity could lead to exploitation of their potential therapeutically. Here we validate the use of transgenic mice reporting cell cycle progression (FUCCI), and stemness (Lgr5-GFP), as a valuable tool to identify regulators of cell cycle re-entry of supporting cells within the auditory epithelium. The small molecule compound CHIR99021 was used to inhibit GSK3 activity. This led to a significant increase in the fraction of proliferating sphere-forming cells, labeled by the FUCCI markers and in the percentage of Lgr5-GFP + cells, as well as a selective increase in the fraction of S-G2-M cells in the Lgr5 + population. Using whole mount cultures of the organ of Corti we detected a statistically significant increment in the fraction of proliferating Sox2 supporting cells after CHIR99021 treatment, but only rarely appearance of novel MyoVIIa+/Edu + hair cells. In conclusion, these tools provide a robust mean to identify novel regulators of auditory organ regeneration and to clarify the contribution of stem cell activity.
Resumo:
Downregulation of the unfolded protein response mediates proteasome inhibitor resistance in Multiple Myeloma.The Human Immunodeficieny Virus protease inhibitor nelfinavir activates the unfolded protein response in vitro. We determined dose limiting toxicity and recommended dose for phase II of nelfinavir in combination with the proteasome inhibitor bortezomib. 12 patients with advanced hematological malignancies were treated with nelfinavir (2500 - 5000 mg/d p.o., d 1-14, 3+3 dose escalation) and bortezomib (1.3 mg/m2, d 1, 4, 8, 11; 21 day cycles). A run in phase with nelfinavir monotherapy allowed pharmakokinetic/pharmakodynamic assessment of nelfinavir in the presence or absence of concomittant bortezomib. Endpoints included dose limiting toxicity, activation of the unfolded protein response, proteasome activity, toxicity and response to trial treatment. Nelfinavir 2 x 2500 mg was the recommended phase II dose identified. Nelfinavir alone significantly upregulated expression of proteins related to the unfolded protein response in peripheral blood mononuclear cells and inhibited proteasome activity. Of 10 evaluable patients in the dose escalation cohort, 3 achieved a partial response, 4 stable disease for ≥ 2 cycles, while 3 had progressive disease as best response. In an exploratory extension cohort with 6 relapsed, bortezomib-refractory, lenalidomide-resistant myeloma patients treated at the recommended phase II dose, 3 reached a partial response, 2 a minor response and one progressive disease. The combination of nelfinavir with bortezomib is safe and shows promising signals for activity in advanced, bortezomib-refractory MM. Induction of the unfolded protein response by nelfinavir may overcome the biological features of proteasome inhibitor resistance. (Trial registration NCT01164709).
Resumo:
Gastrointestinal (GI) protein loss, due to lymphangiectasia or chronic inflammation, can be challenging to diagnose. This study evaluated the diagnostic accuracy of serum and fecal canine α1-proteinase inhibitor (cα1PI) concentrations to detect crypt abscesses and/or lacteal dilation in dogs. Serum and fecal cα1PI concentrations were measured in 120 dogs undergoing GI tissue biopsies, and were compared between dogs with and without crypt abscesses/lacteal dilation. Sensitivity and specificity were calculated for dichotomous outcomes. Serial serum cα1PI concentrations were also evaluated in 12 healthy corticosteroid-treated dogs. Serum cα1PI and albumin concentrations were significantly lower in dogs with crypt abscesses and/or lacteal dilation than in those without (both P <0.001), and more severe lesions were associated with lower serum cα1PI concentrations, higher 3 days-mean fecal cα1PI concentrations, and lower serum/fecal cα1PI ratios. Serum and fecal cα1PI, and their ratios, distinguished dogs with moderate or severe GI crypt abscesses/lacteal dilation from dogs with only mild or none such lesions with moderate sensitivity (56-92%) and specificity (67-81%). Serum cα1PI concentrations increased during corticosteroid administration. We conclude that serum and fecal α1PI concentrations reflect the severity of intestinal crypt abscesses/lacteal dilation in dogs. Due to its specificity for the GI tract, measurement of fecal cα1PI appears to be superior to serum cα1PI for diagnosing GI protein loss in dogs. In addition, the serum/fecal cα1PI ratio has an improved accuracy in hypoalbuminemic dogs, but serum cα1PI concentrations should be carefully interpreted in corticosteroid-treated dogs.
Resumo:
Protein degradation is regulated during the cell cycle of all eukaryotic cells and is mediated by the ubiquitin-proteasome pathway. Potent and specific peptide-derived inhibitors of the 20S proteasome have been developed recently as anti-cancer agents, based on their ability to induce apoptosis in rapidly dividing cells. Here, we tested a novel small molecule dipeptidyl boronic acid proteasome inhibitor, named MLN-273 on blood and liver stages of Plasmodium species, both of which undergo active replication, probably requiring extensive proteasome activity. The inhibitor blocked Plasmodium falciparum erythrocytic development at an early ring stage as well as P. berghei exoerythrocytic progression to schizonts. Importantly, neither uninfected erythrocytes nor hepatocytes were affected by the drug. MLN-273 caused an overall reduction in protein degradation in P. falciparum, as demonstrated by immunoblots using anti-ubiquitin antibodies to label ubiquitin-tagged protein conjugates. This led us to conclude that the target of the drug was the parasite proteasome. The fact that proteasome inhibitors are presently used as anti-cancer drugs in humans forms a solid basis for further development and makes them potentially attractive drugs also for malaria chemotherapy.