92 resultados para non-farm activity
Resumo:
Acetylcholinesterase inhibitors (AChEIs) are effective in the treatment of cognitive symptoms in Alzheimer's disease (AD). Because the behavioral and psychological symptoms of dementia (BPSD) have also been attributed to central cholinergic deficits, we examined whether the AChEI rivastigmine can reduce motor activity as measured in a rater-independent manner by wrist actigraphy in agitated AD patients. A total of 20 consecutive AD inpatients (13 females, 7 males, 80.4+/-9.1 years, S.D.) were included from our geriatric psychiatry unit, all of whom were exhibiting agitated behavior not attributable to delirium. Patients were assigned randomly and in a single-blinded fashion to rivastigmine 3mg or placebo for 14 days. Motor activity levels were monitored using an actigraph worn continuously on the wrist of the non-dominant hand. At the beginning and end of the study, patients were assessed using the Neuropsychiatric Inventory (NPI) and Nurses' Observation Scale for Geriatric Patients (NOSGER). Patients in the rivastigmine group exhibited less agitation than placebo recipients on the NPI-agitation subscale, but not on NOSGER. Actigraphic measurements showed a tendency towards reduced motor activity in the rivastigmine group. Because rivastigmine usually exerts its main effects after a longer period of time, the short-term effects seen in our study justify further controlled clinical trials examining the use of rivastigmine in BPSD by means of actigraphy.
Resumo:
OBJECTIVE: Neurally adjusted ventilatory assist uses the electrical activity of the diaphragm (EAdi)-a pneumatically-independent signal-to control the timing and pressure of the ventilation delivered, and should not be affected by leaks. The aim of this study was to evaluate whether NAVA can deliver assist in synchrony and proportionally to EAdi after extubation, with a leaky non-invasive interface. DESIGN AND SETTING: Prospective, controlled experimental study in an animal laboratory. ANIMALS: Ten rabbits, anesthetized, mechanically ventilated. INTERVENTIONS: Following lung injury, the following was performed in sequential order: (1) NAVA delivered via oral endotracheal tube with PEEP; (2) same as (1) without PEEP; (3) non-invasive NAVA at unchanged NAVA level and no PEEP via a single nasal prong; (4) no assist; (5) non-invasive NAVA at progressively increasing NAVA levels. MEASUREMENTS AND RESULTS: EAdi, esophageal pressure, blood gases and hemodynamics were measured during each condition. For the same NAVA level, the mean delivered pressure above PEEP increased from 3.9[Symbol: see text]+/-[Symbol: see text]1.4[Symbol: see text]cmH(2)O (intubated) to 7.5[Symbol: see text]+/-[Symbol: see text]3.8[Symbol: see text]cmH(2)O (non-invasive) (p[Symbol: see text]<[Symbol: see text]0.05) because of increased EAdi. No changes were observed in PaO(2) and PaCO(2). Increasing the NAVA level fourfold during non-invasive NAVA restored EAdi and esophageal pressure swings to pre-extubation levels. Triggering (106[Symbol: see text]+/-[Symbol: see text]20[Symbol: see text]ms) and cycling-off delays (40[Symbol: see text]+/-[Symbol: see text]21[Symbol: see text]ms) during intubation were minimal and not worsened by the leak (95[Symbol: see text]+/-[Symbol: see text]13[Symbol: see text]ms and 33[Symbol: see text]+/-[Symbol: see text]9[Symbol: see text]ms, respectively). CONCLUSION: NAVA can be effective in delivering non-invasive ventilation even when the interface with the patient is excessively leaky, and can unload the respiratory muscles while maintaining synchrony with the subject's demand.
Resumo:
The use of fresh osteochondral allografts is a popular approach to treat articular cartilage lesions. Immunological reactions of the recipient elicited by the allograft's osseous portion, however, frequently result in their deterioration. So far, little emphasis has been put on describing morphology and biological activity in fresh allografts and paralleling these to the immunological processes triggered in the host. Therefore, in the present study murine neonatal femora, serving as osteochondral grafts, were transplanted as fresh isografts (controls) or allografts (the latter in non- or presensitized mice) and retrieved after 2, 5, 10, and 20 days. It was shown that (1) in isografts active bone cells (osteoblasts, osteoclasts) were present, the bone marrow was repopulated with hematopoietic cells, the diaphysis increased in length, and no specific immunological reaction by the recipient was evoked. (2) Allografts transplanted into nonsensitized hosts initially appeared similar as isografts, but activated T lymphocytes at the transplantation site preceded loss of active bone cells within the graft and development of fibrosis within the marrow cavity. (3) In allografts transplanted into presensitized recipients, severe deterioration of the graft was observed with very few active bone cells, accompanied by an invasion of T lymphocytes and fibrosis in the marrow cavity already in early stages. Similar to vital organ transplantation, the function of cells within osteochondral allografts is severely impaired after being recognized by the immune system. Therefore, emphasis has to be placed on the development of procedures preserving cartilage biology while reducing the antigenicity of the allograft's osseous portion.
Resumo:
Combined EEG/fMRI recordings offer a promising opportunity to detect brain areas with altered BOLD signal during interictal epileptic discharges (IEDs). These areas are likely to represent the irritative zone, which is itself a reflection of the epileptogenic zone. This paper reports on the imaging findings using independent component analysis (ICA) to continuously quantify epileptiform activity in simultaneously acquired EEG and fMRI. Using ICA derived factors coding for the epileptic activity takes into account that epileptic activity is continuously fluctuating with each spike differing in amplitude, duration and maybe topography, including subthreshold epileptic activity besides clear IEDs and may thus increase the sensitivity and statistical power of combined EEG/fMRI in epilepsy. Twenty patients with different types of focal and generalized epilepsy syndromes were investigated. ICA separated epileptiform activity from normal physiological brain activity and artifacts. In 16/20 patients, BOLD correlates of epileptic activity matched the EEG sources, the clinical semiology, and, if present, the structural lesions. In clinically equivocal cases, the BOLD correlates aided to attribute proper diagnosis of the underlying epilepsy syndrome. Furthermore, in one patient with temporal lobe epilepsy, BOLD correlates of rhythmic delta activity could be employed to delineate the affected hippocampus. Compared to BOLD correlates of manually identified IEDs, the sensitivity was improved from 50% (10/20) to 80%. The ICA EEG/fMRI approach is a safe, non-invasive and easily applicable technique, which can be used to identify regions with altered hemodynamic effects related to IEDs as well as intermittent rhythmic discharges in different types of epilepsy.
Resumo:
SUMMARY: Multimodal imaging was performed in Rasmussen Encephalitis (RE) during episodes of complex-partial and focal motor status epilepticus including independent component analysis of BOLD-fMRI, arterial spin labeling perfusion imaging and diffusion tensor imaging. The active epileptic network and topographically independent brain areas showed regional hyperperfusion and progressive atrophy. The results suggest that hyperperfusion outside of the epileptic network represent active inflammation in RE and the imaging protocol presented here, allows assessing thereby the disease activity non-invasively.
Resumo:
INTRODUCTION: It has been suggested that infants dynamically regulate their tidal flow and end-expiratory volume level. The interaction between muscle activity, flow and lung volume in spontaneously sleeping neonates is poorly studied, since it requires the assessment of transcutaneous electromyography of respiratory muscles (rEMG) in matched comparison to lung function measurements. METHODS: After determining feasibility and repeatability of rEMG in 20 spontaneously sleeping healthy neonates, we measured the relative impact of intercostal and diaphragmatic EMG activity in direct comparison to the resulting tidal flow and FRC. RESULTS: We found good feasibility, repeatability and correlation of timing indices between rEMG activity and flow. The rEMG amplitude was significantly dependent on the resistive load of the face mask. Diaphragm and intercostal muscle activity commenced prior to the onset of flow and remained active during the expiratory cycle. The relative contribution of intercostal and diaphragmatic activity to flow was variable and changed dynamically. CONCLUSION: Using matched rEMG, air flow and lung volume measurements, we have found good feasibility and repeatability of intercostal and diaphragm rEMG measurements and provide the first quantitative measures of the temporal relationship between muscle activity and flow in spontaneously sleeping healthy neonates. Lung mechanical function is dynamically regulated and adapts on a breath to breath basis. So, non-invasive rEMG measurements alone or in combination with lung function might provide a more comprehensive picture of pulmonary mechanics in future studies. The data describing the timing of EMG and flow may be important for future studies of EMG triggered mechanical ventilation.
Resumo:
OBJECTIVE: Patient-ventilator synchrony during non-invasive pressure support ventilation with the helmet device is often compromised when conventional pneumatic triggering and cycling-off were used. A possible solution to this shortcoming is to replace the pneumatic triggering with neural triggering and cycling-off-using the diaphragm electrical activity (EA(di)). This signal is insensitive to leaks and to the compliance of the ventilator circuit. DESIGN: Randomized, single-blinded, experimental study. SETTING: University Hospital. PARTICIPANTS AND SUBJECTS: Seven healthy human volunteers. INTERVENTIONS: Pneumatic triggering and cycling-off were compared to neural triggering and cycling-off during NIV delivered with the helmet. MEASUREMENTS AND RESULTS: Triggering and cycling-off delays, wasted efforts, and breathing comfort were determined during restricted breathing efforts (<20% of voluntary maximum EA(di)) with various combinations of pressure support (PSV) (5, 10, 20 cm H(2)O) and respiratory rates (10, 20, 30 breath/min). During pneumatic triggering and cycling-off, the subject-ventilator synchrony was progressively more impaired with increasing respiratory rate and levels of PSV (p < 0.001). During neural triggering and cycling-off, effect of increasing respiratory rate and levels of PSV on subject-ventilator synchrony was minimal. Breathing comfort was higher during neural triggering than during pneumatic triggering (p < 0.001). CONCLUSIONS: The present study demonstrates in healthy subjects that subject-ventilator synchrony, trigger effort, and breathing comfort with a helmet interface are considerably less impaired during increasing levels of PSV and respiratory rates with neural triggering and cycling-off, compared to conventional pneumatic triggering and cycling-off.
Resumo:
AIMS: To assess changes in cardiac adrenergic activity with cardiac resynchronization therapy (CRT), and to investigate whether these changes are related to improvement in left ventricular ejection fraction (LVEF). METHODS AND RESULTS: Sixteen patients (13 males, age 66 +/- 7 years) were studied at baseline and after > or =6 months of CRT (mean follow-up 9.2 +/- 3.2 months). LVEF was assessed by nuclear angiography. Responders were defined as patients showing > or =5% absolute increase in LVEF + improvement in > or =1 NYHA class + absence of heart failure hospitalization. Cardiac sympathetic nerve activity was studied by (123)I-metaiodobenzyl-guanidine ((123)I-MIBG) scintigraphy. Responders (n = 8) showed lower (123)I-MIBG washout at follow-up when compared with non-responders (P = 0.002), indicating lower cardiac sympathetic nerve activity. The decrease in (123)I-MIBG washout at follow-up when compared with baseline was only seen in the responder group (P = 0.036). There was a moderate correlation between increase in LVEF and decrease in (123)I-MIBG washout (r = 0.52, P = 0.04). CONCLUSION: CRT induces a reduction in cardiac sympathetic nerve activity in responders, that parallels an improvement in LVEF, whereas non-responders do not show any significant changes.
Resumo:
MicroRNAs (miRNA) are negative regulators of gene expression at the posttranscriptional level, which are involved in tumorigenesis. Two miRNAs, miR-15a and miR-16, which are located at chromosome 13q14, have been implicated in cell cycle control and apoptosis, but little information is available about their role in solid tumors. To address this question, we established a protocol to quantify miRNAs from laser capture microdissected tissues. Here, we show that miR-15a/miR-16 are frequently deleted or down-regulated in squamous cell carcinomas and adenocarcinomas of the lung. In these tumors, expression of miR-15a/miR-16 inversely correlates with the expression of cyclin D1. In non-small cell lung cancer (NSCLC) cell lines, cyclins D1, D2, and E1 are directly regulated by physiologic concentrations of miR-15a/miR-16. Consistent with these results, overexpression of these miRNAs induces cell cycle arrest in G(1)-G(0). Interestingly, H2009 cells lacking Rb are resistant to miR-15a/miR-16-induced cell cycle arrest, whereas reintroduction of functional Rb resensitizes these cells to miRNA activity. In contrast, down-regulation of Rb in A549 cells by RNA interference confers resistance to these miRNAs. Thus, cell cycle arrest induced by these miRNAs depends on the expression of Rb, confirming that G(1) cyclins are major targets of miR-15a/miR-16 in NSCLC. Our results indicate that miR-15a/miR-16 are implicated in cell cycle control and likely contribute to the tumorigenesis of NSCLC.
Resumo:
OBJECTIVE: To determine if neurally adjusted ventilatory assist (NAVA) that delivers pressure in proportion to diaphragm electrical activity is as protective to acutely injured lungs (ALI) and non-pulmonary organs as volume controlled (VC), low tidal volume (Vt), high positive end-expiratory pressure (PEEP) ventilation. DESIGN: Prospective, randomized, laboratory animal study. SUBJECTS: Twenty-seven male New Zealand white rabbits. INTERVENTIONS: Anesthetized rabbits with hydrochloric acid-induced ALI were randomized (n = 9 per group) to 5.5 h NAVA (non-paralyzed), VC (paralyzed; Vt 6-ml/kg), or VC (paralyzed; Vt 15-ml/kg). PEEP was adjusted to hemodynamic goals in NAVA and VC6-ml/kg, and was 1 cmH2O in VC15-ml/kg. MEASUREMENTS AND MAIN RESULTS: PaO2/FiO2; lung wet-to-dry ratio; lung histology; interleukin-8 (IL-8) concentrations in broncho-alveolar-lavage (BAL) fluid, plasma, and non-pulmonary organs; plasminogen activator inhibitor type-1 and tissue factor in BAL fluid and plasma; non-pulmonary organ apoptosis rate; creatinine clearance; echocardiography. PEEP was similar in NAVA and VC6-ml/kg. During NAVA, Vt was lower (3.1 +/- 0.9 ml/kg), whereas PaO2/ FiO2, respiratory rate, and PaCO2 were higher compared to VC6-ml/kg (p<0.05 for all). Variables assessing ventilator-induced lung injury (VILI), IL-8 levels, non-pulmonary organ apoptosis rate, and kidney as well as cardiac performance were similar in NAVA compared to VC6-ml/kg. VILI and non-pulmonary organ dysfunction was attenuated in both groups compared to VC15-ml/kg. CONCLUSIONS: In anesthetized rabbits with early experimental ALI, NAVA is as effective as VC6-ml/kg in preventing VILI, in attenuating excessive systemic and remote organ inflammation, and in preserving cardiac and kidney function.
Resumo:
OBJECTIVE: Anaemia in rheumatoid arthritis (RA) is prototypical of the chronic disease type and is often neglected in clinical practice. We studied anaemia in relation to disease activity, medications and radiographic progression. METHODS: Data were collected between 1996 and 2007 over a mean follow-up of 2.2 years. Anaemia was defined according to WHO (♀ haemoglobin<12 g/dl, ♂: haemoglobin<13 g/dl), or alternative criteria. Anaemia prevalence was studied in relation to disease parameters and pharmacological therapy. Radiographic progression was analysed in 9731 radiograph sets from 2681 patients in crude longitudinal regression models and after adjusting for potential confounding factors, including the clinical disease activity score with the 28-joint count for tender and swollen joints and erythrocyte sedimentation rate (DAS28ESR) or the clinical disease activity index (cDAI), synthetic antirheumatic drugs and antitumour necrosis factor (TNF) therapy. RESULTS: Anaemia prevalence decreased from more than 24% in years before 2001 to 15% in 2007. Erosions progressed significantly faster in patients with anaemia (p<0.001). Adjusted models showed these effects independently of clinical disease activity and other indicators of disease severity. Radiographic damage progression rates were increasing with severity of anaemia, suggesting a 'dose-response effect'. The effect of anaemia on damage progression was maintained in subgroups of patients treated with TNF blockade or corticosteroids, and without non-selective nonsteroidal anti-inflammatory drugs (NSAIDs). CONCLUSIONS: Anaemia in RA appears to capture disease processes that remain unmeasured by established disease activity measures in patients with or without TNF blockade, and may help to identify patients with more rapid erosive disease.
Resumo:
Here, we review the effects of non-invasive brain stimulation such as transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) in the rehabilitation of neglect. We found 12 studies including 172 patients (10 TMS studies and 2 tDCS studies) fulfilling our search criteria. Activity of daily living measures such as the Barthel Index or, more specifically for neglect, the Catherine Bergego Scale were the outcome measure in three studies. Five studies were randomized controlled trials with a follow-up time after intervention of up to 6 weeks. One TMS study fulfilled criteria for Class I and one for Class III evidence. The studies are heterogeneous concerning their methodology, outcome measures, and stimulation parameters making firm comparisons and conclusions difficult. Overall, there are however promising results for theta-burst stimulation, suggesting that TMS is a powerful add-on therapy in the rehabilitation of neglect patients.
Resumo:
Activating epidermal growth factor receptor (EGFR) mutations are recognized biomarkers for patients with metastatic non-small cell lung cancer (NSCLC) treated with EGFR tyrosine kinase inhibitors (TKIs). EGFR TKIs can also have activity against NSCLC without EGFR mutations, requiring the identification of additional relevant biomarkers. Previous studies on tumor EGFR protein levels and EGFR gene copy number revealed inconsistent results. The aim of the study was to identify novel biomarkers of the response to TKIs in NSCLC by investigating whole genome expression at the exon-level. We used exon arrays and clinical samples from a previous trial (SAKK19/05) to investigate the expression variations at the exon-level of 3 genes potentially playing a key role in modulating treatment response: EGFR, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and vascular endothelial growth factor (VEGFA). We identified the expression of EGFR exon 18 as a new predictive marker for patients with untreated metastatic NSCLC treated with bevacizumab and erlotinib in the first line setting. The overexpression of EGFR exon 18 in tumor was significantly associated with tumor shrinkage, independently of EGFR mutation status. A similar significant association could be found in blood samples. In conclusion, exonic EGFR expression particularly in exon 18 was found to be a relevant predictive biomarker for response to bevacizumab and erlotinib. Based on these results, we propose a new model of EGFR testing in tumor and blood.
Resumo:
The thalamus integrates and transmits sensory information to the neocortex. The activity of thalamocortical relay (TC) cells is modulated by specific inhibitory circuits. Although this inhibition plays a crucial role in regulating thalamic activity, little is known about long-term changes in synaptic strength at these inhibitory synapses. Therefore, we studied long-term plasticity of inhibitory inputs to TC cells in the posterior medial nucleus of the thalamus by combining patch-clamp recordings with two-photon fluorescence microscopy in rat brain slices. We found that specific activity patterns in the postsynaptic TC cell induced inhibitory long-term potentiation (iLTP). This iLTP was non-Hebbian because it did not depend on the timing between presynaptic and postsynaptic activity, but it could be induced by postsynaptic burst activity alone. iLTP required postsynaptic dendritic Ca2+ influx evoked by low-threshold Ca2+ spikes. In contrast, tonic postsynaptic spiking from a depolarized membrane potential (−50 mV), which suppressed these low-threshold Ca2+ spikes, induced no plasticity. The postsynaptic dendritic Ca2+ increase triggered the synthesis of nitric oxide that retrogradely activated presynaptic guanylyl cyclase, resulting in the presynaptic expression of iLTP. The dependence of iLTP on the membrane potential and therefore on the postsynaptic discharge mode suggests that this form of iLTP might occur during sleep, when TC cells discharge in bursts. Therefore, iLTP might be involved in sleep state-dependent modulation of thalamic information processing and thalamic oscillations.
Resumo:
A central focus of invasion biology is to identify the traits that predict which introduced species will become invasive. Behavioral traits related to locomotor activity most likely play a pivotal role in determining a species’invasion success but have rarely been studied, particularly in terrestrial invertebrates. Here, we experimentally investigated the small-scale locomotor activity of two slug species with divergent invasion success in Europe, the highly invasive slug, Arion lusitanicus, and the closely related, non-invasive and native slug, Arion rufus. To do so, we used a multi-state capture-mark-recapture approach, and hypothesized that the invasive slug has a higher moving rate (keeps on moving) and leaving rate (leaves more frequently known places). A total of 221 invasive and 241 non-invasive slugs were individually marked using magnetic transponders and released in three study sites differing in habitat type. The slugs were recaptured using shelter traps, and moving and leaving rates were estimated. Both rates were significantly higher for the invasive slug, demonstrating a higher locomotor activity which might partly explain its invasion success. Our results provide evidence for the recently suggested idea that locomotor activity might be an important trait underlying animal invasions using for the first time terrestrial invertebrates.