76 resultados para multiple drug resistance
Resumo:
Resistance of trypanosomes to melarsoprol is ascribed to reduced uptake of the drug via the P2 nucleoside transporter. The aim of this study was to look for evidence of drug resistance in Trypanosoma brucei gambiense isolates from sleeping sickness patients in Ibba, South Sudan, an area of high melarsoprol failure rate. Eighteen T. b. gambiense stocks were phenotypically and only 10 strains genotypically characterized. In vitro, all isolates were sensitive to melarsoprol, melarsen oxide, and diminazene. Infected mice were cured with a 4 day treatment of 2.5mg/kg bwt melarsoprol, confirming that the isolates were sensitive. The gene that codes for the P2 transporter, TbATI, was amplified by PCR and sequenced. The sequences were almost identical to the TbAT1(sensitive) reference, except for one point mutation, C1384T resulting in the amino acid change proline-462 to serine. None of the described TbAT1(resistant)-type mutations were detected. In a T. b. gambiense sleeping sickness focus where melarsoprol had to be abandoned due to the high incidence of treatment failures, no evidence for drug resistant trypanosomes or for TbAT1(resistant)-type alleles of the P2 transporter could be found. These findings indicate that factors other than drug resistance contribute to melarsoprol treatment failures.
Resumo:
Cancer cells acquire drug resistance as a result of selection pressure dictated by unfavorable microenvironments. This survival process is facilitated through efficient control of oxidative stress originating from mitochondria that typically initiates programmed cell death. We show this critical adaptive response in cancer cells to be linked to uncoupling protein-2 (UCP2), a mitochondrial suppressor of reactive oxygen species (ROS). UCP2 is present in drug-resistant lines of various cancer cells and in human colon cancer. Overexpression of UCP2 in HCT116 human colon cancer cells inhibits ROS accumulation and apoptosis after exposure to chemotherapeutic agents. Tumor xenografts of UCP2-overexpressing HCT116 cells retain growth in nude mice receiving chemotherapy. Augmented cancer cell survival is accompanied by altered NH(2)-terminal phosphorylation of the pivotal tumor suppressor p53 and induction of the glycolytic phenotype (Warburg effect). These findings link UCP2 with molecular mechanisms of chemoresistance. Targeting UCP2 may be considered a novel treatment strategy for cancer.
Resumo:
BACKGROUND: Malignant melanoma is a highly metastatic cutaneous cancer and typically refractory to chemotherapy. Deregulated apoptosis has been identified as a major cause of cancer drug resistance, and upregulated expression of the inhibitor of apoptosis protein melanom, an inhibitor of apoptosis (ML-IAP) is frequent in melanoma. METHODS: Based on the conclusion that ML-IAP expression contributes to a malignant phenotype, we down-regulated the ML-IAP mRNA using sequence optimized antisense oligonucleotides. RESULTS: As measured by real-time PCR, oligonucleotides M706 and M711 inhibited ML-IAP mRNA expression by 47% and 52%, respectively in the highly metastatic and drug resistant SK-MEL28 cell line. Oligonucleotide M706, which was previously evaluated in G361 cells as the most efficient inhibitor of ML-IAP expression, was chosen to compare cell viability and drug sensitivity of these two melanoma cell lines with different p53 functionality. Protein expression was reduced by oligonucleotide M706 to 49% of the normal level and resulted in a dose-dependent specific reduction of cell viability with a maximum of 39% at 600 nM. Typical morphological changes showed that loss of viability was mainly due to cell death. In combination experiments, the use of oligonucleotide M706 resulted in a two-fold increase of cisplatin cytotoxicity at different concentrations of oligonucleotide and cisplatin (P<0.05). This is in line with our previous findings in G361 melanoma cell line, in which oligonucleotide M706 caused a 3-fold increase in cisplatin cytotoxicity. CONCLUSION: Our data suggest the use of ML-IAP antisense oligonucleotides to overcome drug resistance in metastatic melanoma, in spite of its p53 status.
Resumo:
Cancer cells often exhibit mutations in critical molecules of the apoptotic machinery, resulting in resistance to common anticancer therapies. In the absence of apoptosis, autophagic cell death can be an alternative form of cell death by excessive self-digestion. Therefore, autophagic cell death can be considered as a backup cell death mechanism when apoptotic cell death mechanisms fail. However, many tumors also exhibit deficiencies in autophagy that may result in both genomic instability and further anticancer drug resistance. This chapter summarizes our current understanding regarding the regulation of autophagy in tumors and discusses potential new anticancer drug treatment strategies.
Resumo:
Gastro-intestinal nematodes in ruminants, especially Haemonchus contortus, are a global threat to sheep and cattle farming. The emergence of drug resistance, and even multi-drug resistance to the currently available classes of broad spectrum anthelmintics, further stresses the need for new drugs active against gastro-intestinal nematodes. A novel chemical class of synthetic anthelmintics, the Amino-Acetonitrile Derivatives (AADs), was recently discovered and the drug candidate AAD-1566 (monepantel) was chosen for further development. Studies with Caenorhabditis elegans suggested that the AADs act via nicotinic acetylcholine receptors (nAChR) of the nematode-specific DEG-3 subfamily. Here we identify nAChR genes of the DEG-3 subfamily from H. contortus and investigate their role in AAD sensitivity. Using a novel in vitro selection procedure, mutant H. contortus populations of reduced sensitivity to AAD-1566 were obtained. Sequencing of full-length nAChR coding sequences from AAD-susceptible H. contortus and their AAD-1566-mutant progeny revealed 2 genes to be affected. In the gene monepantel-1 (Hco-mptl-1, formerly named Hc-acr-23H), a panel of mutations was observed exclusively in the AAD-mutant nematodes, including deletions at intron-exon boundaries that result in mis-spliced transcripts and premature stop codons. In the gene Hco-des-2H, the same 135 bp insertion in the 5' UTR created additional, out of frame start codons in 2 independent H. contortus AAD-mutants. Furthermore, the AAD mutants exhibited altered expression levels of the DEG-3 subfamily nAChR genes Hco-mptl-1, Hco-des-2H and Hco-deg-3H as quantified by real-time PCR. These results indicate that Hco-MPTL-1 and other nAChR subunits of the DEG-3 subfamily constitute a target for AAD action against H. contortus and that loss-of-function mutations in the corresponding genes may reduce the sensitivity to AADs.
Resumo:
BACKGROUND: HCV coinfection remains a major cause of morbidity and mortality among HIV-infected individuals and its incidence has increased dramatically in HIV-infected men who have sex with men(MSM). METHODS: Hepatitis C virus (HCV) coinfection in the Swiss HIV Cohort Study(SHCS) was studied by combining clinical data with HIV-1 pol-sequences from the SHCS Drug Resistance Database(DRDB). We inferred maximum-likelihood phylogenetic trees, determined Swiss HIV-transmission pairs as monophyletic patient pairs, and then considered the distribution of HCV on those pairs. RESULTS: Among the 9748 patients in the SHCS-DRDB with known HCV status, 2768(28%) were HCV-positive. Focusing on subtype B(7644 patients), we identified 1555 potential HIV-1 transmission pairs. There, we found that, even after controlling for transmission group, calendar year, age and sex, the odds for an HCV coinfection were increased by an odds ratio (OR) of 3.2 [95% confidence interval (CI) 2.2, 4.7) if a patient clustered with another HCV-positive case. This strong association persisted if transmission groups of intravenous drug users (IDUs), MSMs and heterosexuals (HETs) were considered separately(in all cases OR >2). Finally we found that HCV incidence was increased by a hazard ratio of 2.1 (1.1, 3.8) for individuals paired with an HCV-positive partner. CONCLUSIONS: Patients whose HIV virus is closely related to the HIV virus of HIV/HCV-coinfected patients have a higher risk for carrying or acquiring HCV themselves. This indicates the occurrence of domestic and sexual HCV transmission and allows the identification of patients with a high HCV-infection risk.
Resumo:
Escherichia coli, Salmonella spp. and Acinetobacter spp. are important human pathogens. Serious infections due to these organisms are usually treated with extended-spectrum cephalosporins (ESCs). However, in the past two decades we have faced a rapid increasing of infections and colonization caused by ESC-resistant (ESC-R) isolates due to production of extended-spectrum-β-lactamases (ESBLs), plasmid-mediated AmpCs (pAmpCs) and/or carbapenemase enzymes. This situation limits drastically our therapeutic armamentarium and puts under peril the human health. Animals are considered as potential reservoirs of multidrug-resistant (MDR) Gram-negative organisms. The massive and indiscriminate use of antibiotics in veterinary medicine has contributed to the selection of ESC-R E. coli, ESC-R Salmonella spp. and, to less extent, MDR Acinetobacter spp. among animals, food, and environment. This complex scenario is responsible for the expansion of these MDR organisms which may have life-threatening clinical significance. Nowadays, the prevalence of food-producing animals carrying ESC-R E. coli and ESC-R Salmonella (especially those producing CTX-M-type ESBLs and the CMY-2 pAmpC) has reached worryingly high values. More recently, the appearance of carbapenem-resistant isolates (i.e., VIM-1-producing Enterobacteriaceae and NDM-1 or OXA-23-producing Acinetobacter spp.) in livestock has even drawn greater concerns. In this review, we describe the aspects related to the spread of the above MDR organisms among pigs, cattle, and poultry, focusing on epidemiology, molecular mechanisms of resistance, impact of antibiotic use, and strategies to contain the overall problem. The link and the impact of ESC-R organisms of livestock origin for the human scenario are also discussed.
Resumo:
The success of combination antiretroviral therapy is limited by the evolutionary escape dynamics of HIV-1. We used Isotonic Conjunctive Bayesian Networks (I-CBNs), a class of probabilistic graphical models, to describe this process. We employed partial order constraints among viral resistance mutations, which give rise to a limited set of mutational pathways, and we modeled phenotypic drug resistance as monotonically increasing along any escape pathway. Using this model, the individualized genetic barrier (IGB) to each drug is derived as the probability of the virus not acquiring additional mutations that confer resistance. Drug-specific IGBs were combined to obtain the IGB to an entire regimen, which quantifies the virus' genetic potential for developing drug resistance under combination therapy. The IGB was tested as a predictor of therapeutic outcome using between 2,185 and 2,631 treatment change episodes of subtype B infected patients from the Swiss HIV Cohort Study Database, a large observational cohort. Using logistic regression, significant univariate predictors included most of the 18 drugs and single-drug IGBs, the IGB to the entire regimen, the expert rules-based genotypic susceptibility score (GSS), several individual mutations, and the peak viral load before treatment change. In the multivariate analysis, the only genotype-derived variables that remained significantly associated with virological success were GSS and, with 10-fold stronger association, IGB to regimen. When predicting suppression of viral load below 400 cps/ml, IGB outperformed GSS and also improved GSS-containing predictors significantly, but the difference was not significant for suppression below 50 cps/ml. Thus, the IGB to regimen is a novel data-derived predictor of treatment outcome that has potential to improve the interpretation of genotypic drug resistance tests.
Resumo:
Due to widespread development of anthelmintic resistance in equine parasites, recommendations for their control are currently undergoing marked changes with a shift of emphasis toward more coprological surveillance and reduced treatment intensity. Denmark was the first nation to introduce prescription-only restrictions of anthelmintic drugs in 1999, but other European countries have implemented similar legislations over recent years. A questionnaire survey was performed in 2008 among Danish horse owners to provide a current status of practices and perceptions with relation to parasite control. Questions aimed at describing the current use of coprological surveillance and resulting anthelmintic treatment intensities, evaluating knowledge and perceptions about the importance of various attributes of parasite control, and assessing respondents' willingness to pay for advice and parasite surveillance services from their veterinarians. A total of 1060 respondents completed the questionnaire. A large majority of respondents (71.9%) were familiar with the concept of selective therapy. Results illustrated that the respondents' self-evaluation of their knowledge about parasites and their control associated significantly with their level of interest in the topic and their type of education (P<0.0001). The large majority of respondents either dewormed their horses twice a year and/or performed two fecal egg counts per horse per year. This approach was almost equally pronounced in foals, horses aged 1-3 years old, and adult horses. The respondents rated prevention of parasitic disease and prevention of drug resistance as the most important attributes, while cost and frequent fecal testing were rated least important. Respondents' actual spending on parasite control per horse in the previous year correlated significantly with the amount they declared themselves willing to spend (P<0.0001). However, 44.4% declared themselves willing to pay more than what they were spending. Altogether, results indicate that respondents were generally familiar with equine parasites and the concept of selective therapy, although there was some confusion over the terms small and large strongyles. They used a large degree of fecal surveillance in all age groups, with a majority of respondents sampling and/or treating around twice a year. Finally, respondents appeared willing to spend money on parasite control for their horses. It is of concern that the survey suggested that foals and young horses are treated in a manner very similar to adult horses, which is against current recommendations. Thus, the survey illustrates the importance of clear communication of guidelines for equine parasite control.
Resumo:
Pancreatic ductal adenocarcinoma (PDAC) ranks as the fourth commonest cause of cancer death while its incidence is increasing worldwide. For all stages, survival at 5 years is<5%. The lethal nature of pancreatic cancer is attributed to its high metastatic potential to the lymphatic system and distant organs. Lack of effective therapeutic options contributes to the high mortality rates of PDAC. Recent evidence suggests that epithelial-mesenchymal transition (EMT) plays an important role to the disease progression and development of drug resistance in PDAC. Tumor budding is thought to reflect the process of EMT which allows neoplastic epithelial cells to acquire a mesenchymal phenotype thus increasing their capacity for migration and invasion and help them become resistant to apoptotic signals. In a recent study by our own group the presence and prognostic significance of tumor budding in PDAC were investigated and an association between high-grade budding and aggressive clinicopathological features of the tumors as well as worse outcome of the patients was found. The identification of EMT phenotypic targets may help identifying new molecules so that future therapeutic strategies directed specifically against them could potentially have an impact on drug resistance and invasiveness and hence improve the prognosis of PDAC patients. The aim of this short review is to present an insight on the morphological and molecular aspects of EMT and on the factors that are involved in the induction of EMT in PDAC.
Resumo:
Prevalence and genetic relatedness were determined for third-generation cephalosporin-resistant Escherichia coli (3GC-R-Ec) detected in Swiss beef, veal, pork, and poultry retail meat. Samples from meat-packing plants (MPPs) processing 70% of the slaughtered animals in Switzerland were purchased at different intervals between April and June 2013 and analyzed. Sixty-nine 3GC-R-Ec isolates were obtained and characterized by microarray, PCR/DNA sequencing, Multi Locus Sequence Typing (MLST), and plasmid replicon typing. Plasmids of selected strains were transformed by electroporation into E. coli TOP10 cells and analyzed by plasmid MLST. The prevalence of 3GC-R-Ec was 73.3% in chicken and 2% in beef meat. No 3GC-R-Ec were found in pork and veal. Overall, the blaCTX-M-1 (79.4%), blaCMY-2 (17.6%), blaCMY-4 (1.5%), and blaSHV-12 (1.5%) β-lactamase genes were detected, as well as other genes conferring resistance to chloramphenicol (cmlA1-like), sulfonamides (sul), tetracycline (tet), and trimethoprim (dfrA). The 3GC-R-Ec from chicken meat often harbored virulence genes associated with avian pathogens. Plasmid incompatibility (Inc) groups IncI1, IncFIB, IncFII, and IncB/O were the most frequent. A high rate of clonality (e.g., ST1304, ST38, and ST93) among isolates from the same MPPs suggests that strains persist at the plant and spread to meat at the carcass-processing stage. Additionally, the presence of the blaCTX-M-1 gene on an IncI1 plasmid sequence type 3 (IncI1/pST3) in genetically diverse strains indicates interstrain spread of an epidemic plasmid. The blaCMY-2 and blaCMY-4 genes were located on IncB/O plasmids. This study represents the first comprehensive assessment of 3GC-R-Ec in meat in Switzerland. It demonstrates the need for monitoring contaminants and for the adaptation of the Hazard Analysis and Critical Control Point concept to avoid the spread of multidrug-resistant bacteria through the food chain.
Resumo:
Forty methicillin-resistant and -susceptible Staphylococcus pseudintermedius (MRSP and MSSP, respectively) from colonization and infection in dogs and cats were characterized for clonality, antimicrobial, and biocide susceptibility. MSSP were genetically more diverse than MRSP by multi-locus sequence typing and pulsed-field gel electrophoresis. Three different spa types (t06, t02, t05) and two SCCmec types (II-III and V) were detected in the MRSP isolates. All MRSP and two MSSP strains were multidrug-resistant. Several antibiotic resistance genes (mecA, blaZ, tet(M), tet(K), aac(6')-Ie-aph(2')-Ia, aph(3')-III, ant(6)-Ia, sat4, erm(B), lnu(A), dfr(G), and catpC221) were identified by microarray and double mutations in the gyrA and grlA genes and a single mutation in the rpoB gene were detected by sequence analysis. No differences were detected between MSSP and MRSP in the chlorhexidine acetate (CHA) minimum inhibitory concentrations (MICs). However, two MSSP had elevated MIC to triclosan (TCL) and one to benzalkonium chloride and ethidium bromide. One MSSP isolate harboured a qacA gene, while in another a qacB gene was detected. None of the isolates harboured the sh-fabI gene. Three of the biocide products studied had high bactericidal activity (Otodine(®), Clorexyderm Spot Gel(®), Dermocanis Piocure-M(®)), while Skingel(®) failed to achieve a five log reduction in the bacterial counting. S. pseudintermedius have become a serious therapeutic challenge in particular if methicillin- resistance and/or multidrug-resistance are involved. Biocides, like CHA and TCL, seem to be clinically effective and safe topical therapeutic options.
Resumo:
SUMMARY We analysed Mycobacterium tuberculosis strains from children, hospitalized from January 2004 to July 2008 in the largest paediatric hospital complex in Cambodia. Specimens were tested for drug susceptibility and genotypes. From the 260 children, 161 strains were available. The East African-Indian genotype family was the most common (59·0%), increasing in frequency with distance from the Phnom Penh area, while the frequency of the Beijing genotype family strains decreased. The drug resistance pattern showed a similar geographical gradient: lowest in the northwest (4·6%), intermediate in the central (17·1%), and highest in the southeastern (30·8%) parts of the country. Three children (1·9%) had multidrug-resistant tuberculosis. The Beijing genotype and streptomycin resistance were significantly associated (P < 0·001). As tuberculosis in children reflects recent transmission patterns in the community, multidrug resistance levels inform about the current quality of the tuberculosis programme.
Resumo:
Incidence as well as morbidity and mortality of opportunistic infections (OI) have declined remarkably since the availability of antiretroviral treatment (ART). Nearly half of all persons infected with HIV however do not know their HIV-status, and the diagnosis of an OI may be the first manifestation of their HIV infection. Therefore, knowledge of the presentation of OIs as well as their management should remain an essential part of clinicians' expertise. After starting ART the immune system will improve; in this context OI may be unmasked or the clinical presentation of known OI may worsen. Before starting ART therefore, it is essential to rule out any asymptomatic or latent OI. For the same reason, in the case of a known OI, the start of ART must often be deferred for some weeks after the start of OI treatment. Treatment of OIs is complex and often results in a large pill-burden for the patient with the potential for multiple drug-drug-interactions, particularly once ART has to be started. Many of the OI treatments are also associated with frequent drug side-effects and allergies. OIs can be prevented with specific antimicrobial agents once the CD4 have decreased below a defined threshold. However, the main prevention of OI is the timely recognition of HIV infection and an early start of ART before complications of OI appear.