50 resultados para lymphocyte and humoral alterations
Resumo:
Epstein-Barr virus (EBV)-associated gastric carcinomas (GC) represent a distinct and well-recognized subtype of gastric cancer with a prevalence of around 10% of all GC. In contrast, EBV has not been reported to play a major role in esophageal adenocarcinomas (EAC) and adenocarcinomas of the gastro-esophageal junction (GEJ). We report our experiences on EBV in collections of gastro-esophageal adenocarcinomas from two surgical centers and discuss the current state of research in this field. Tumor samples from 465 primary resected gastro-esophageal adenocarcinomas (118 EAC, 73 GEJ, and 274 GC) were investigated. Presence of EBV was determined by EBV-encoded small RNAs (EBER) in situ hybridization. Results were correlated with pathologic parameters (UICC pTNM category, Her2 status, tumor grading) and survival. EBER positivity was observed in 14 cases. None of the EAC were positive for EBER. In contrast, we observed EBER positivity in 2/73 adenocarcinomas of the GEJ (2.7%) and 12/274 GC (4.4%). These were of intestinal type (seven cases) or unclassifiable (six cases), while only one case was of diffuse type according to the Lauren classification. No association between EBV and pT, pN, or tumor grading was found, neither was there a correlation with clinical outcome. None of the EBER positive cases were Her2 positive. In conclusion, EBV does not seem to play a role in the carcinogenesis of EAC. Moreover, adenocarcinomas of the GEJ show lower rates of EBV positivity compared to GC. Our data only partially correlate with previous reports from the literature. This highlights the need for further research on this distinct entity. Recent reports, however, have identified specific epigenetic and genetic alterations in EBV-associated GC, which might lead to a distinct treatment approach for this specific subtype of GC in the future.
Resumo:
Myxozoans evoke important economic losses in aquaculture production, but there is almost a total lack of disease control methods as no vaccines or commercial treatments are currently available. Knowledge of the immune responses that lead to myxozoan elimination and subsequent disease resistance is vital for shaping the future development of disease control measures. Different fish immune factors triggered by myxozoan parasites are reviewed in this chapter. Detailed information on the phenotypic and underlying molecular aspects of innate and adaptive responses, at both cellular and humoral levels, is provided for some well-studied fishmyxozoan systems. The importance of the local immune response, mainly at mucosal sites, is also highlighted. Myxozoan tactics to disable or avoid immune responses, such as modulation of immune gene transcription and immune evasion, are also reviewed. The existence of innate and acquired resistance to some myxozoan species suggest promising possibilities for controlling myxozooses through immune-based strategies, such as genetic selection for host resistance, vaccination, immune therapies and administration of immunostimulants.
Resumo:
PURPOSE The aim of this study was to investigate if (1) the volume of subdural hematomas (SDH), midline shift, and CT density of subdural hematomas are altered by postmortem changes and (2) if these changes are dependent on the postmortem interval (PMI). MATERIALS AND METHODS Ante mortem computed tomography (AMCT) of the head was compared to corresponding postmortem CT (PMCT) in 19 adults with SDH. SDH volume, midline shift, and hematoma density were measured on both AMCT and PMCT and their differences assessed using Wilcoxon-Signed Rank Test. Spearman's Rho Test was used to assess significant correlations between the PMI and the alterations of SDH volume, midline shift, and hematoma density. RESULTS Mean time between last AMCT and PMCT was 109 h, mean PMI was 35 h. On PMCT mean midline displacement was decreased by 57% (p < 0.001); mean SDH volume was decreased by 38% (p < 0.001); and mean hematoma density was increased by 18% (p < 0.001) in comparison to AMCT. There was no correlation between the PMI and the normalization of the midline shift (p = 0.706), the reduction of SDH volume (p = 0.366), or the increase of hematoma density (p = 0.140). CONCLUSIONS This study reveals that normal postmortem changes significantly affect the extent and imaging characteristics of subdural hematoma and may therefore affect the interpretation of these findings on PMCT. Radiologists and forensic pathologists who use PMCT must be aware of these phenomena in order to correctly interpret PMCT findings in cases of subdural hemorrhages.
Resumo:
Medulloblastoma is the most common malignant childhood brain tumor and is associated with a poor outcome. There is an urgent need to develop novel targeted therapeutic approaches for medulloblastoma, which will arise from an enhanced understanding of the disease at the molecular level. Medulloblastoma has been recognized to be a heterogeneous disease, and no recurrent cancer gene mutations have been found, although many of the mutations described so far affect key intracellular signaling pathways, such as sonic hedgehog (SHH) and Wnt/β-catenin. The PI3K/AKT/mTOR (PAM) signaling pathway controls key cellular responses, such as cell growth and proliferation, survival, migration and metabolism. Over the last decades, it has been recognized that this intracellular signaling pathway is frequently activated by genetic and epigenetic alterations in malignant brain tumors, including medulloblastoma. Clinical trials have started to evaluate the safety and efficacy of agents targeting this pathway in malignant brain tumors. Due to the complexity of the PAM signaling pathway, there remain significant difficulties in the development of novel therapeutic approaches. The future challenges in developing effective treatments for cancer patients include the development of predictive biomarkers and combinatorial approaches to effectively target multiple signal transduction pathways. In this review article, we will summarize the current knowledge about the role of PAM signaling in medulloblastoma and discuss the strategies that are currently being evaluated with targeted agents against this pathway.
Resumo:
Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease in the activity of the TGF-β signaling pathway and hence for the loss of the potential for autonomous cartilage-like tissue formation.