63 resultados para land evaluate system
Resumo:
In this work, we provide a passive location monitoring system for IEEE 802.15.4 signal emitters. The system adopts software defined radio techniques to passively overhear IEEE 802.15.4 packets and to extract power information from baseband signals. In our system, we provide a new model based on the nonlinear regression for ranging. After obtaining distance information, a Weighted Centroid (WC) algorithm is adopted to locate users. In WC, each weight is inversely proportional to the nth power of propagation distance, and the degree n is obtained from some initial measurements. We evaluate our system in a 16m-18m area with complex indoor propagation conditions. We are able to achieve a median error of 2:1m with only 4 anchor nodes.
Resumo:
BACKGROUND The aim of this study was to evaluate imaging-based response to standardized neoadjuvant chemotherapy (NACT) regimen by dynamic contrast-enhanced magnetic resonance mammography (DCE-MRM), whereas MR images were analyzed by an automatic computer-assisted diagnosis (CAD) system in comparison to visual evaluation. MRI findings were correlated with histopathologic response to NACT and also with the occurrence of metastases in a follow-up analysis. PATIENTS AND METHODS Fifty-four patients with invasive ductal breast carcinomas received two identical MRI examinations (before and after NACT; 1.5T, contrast medium gadoteric acid). Pre-therapeutic images were compared with post-therapeutic examinations by CAD and two blinded human observers, considering morphologic and dynamic MRI parameters as well as tumor size measurements. Imaging-assessed response to NACT was compared with histopathologically verified response. All clinical, histopathologic, and DCE-MRM parameters were correlated with the occurrence of distant metastases. RESULTS Initial and post-initial dynamic parameters significantly changed between pre- and post-therapeutic DCE-MRM. Visually evaluated DCE-MRM revealed sensitivity of 85.7%, specificity of 91.7%, and diagnostic accuracy of 87.0% in evaluating the response to NACT compared to histopathology. CAD analysis led to more false-negative findings (37.0%) compared to visual evaluation (11.1%), resulting in sensitivity of 52.4%, specificity of 100.0%, and diagnostic accuracy of 63.0%. The following dynamic MRI parameters showed significant associations to occurring metastases: Post-initial curve type before NACT (entire lesions, calculated by CAD) and post-initial curve type of the most enhancing tumor parts after NACT (calculated by CAD and manually). CONCLUSIONS In the accurate evaluation of response to neoadjuvant treatment, CAD systems can provide useful additional information due to the high specificity; however, they cannot replace visual imaging evaluation. Besides traditional prognostic factors, contrast medium-induced dynamic MRI parameters reveal significant associations to patient outcome, i.e. occurrence of distant metastases.
Resumo:
PURPOSE To evaluate the accuracy, safety, and efficacy of cervical nerve root injection therapy using magnetic resonance guidance in an open 1.0 T MRI system. METHODS Between September 2009 and April 2012, a total of 21 patients (9 men, 12 women; mean age 47.1 ± 11.1 years) underwent MR-guided cervical periradicular injection for cervical radicular pain in an open 1.0 T system. An interactive proton density-weighted turbo spin echo (PDw TSE) sequence was used for real-time guidance of the MR-compatible 20-gauge injection needle. Clinical outcome was evaluated on a verbal numeric rating scale (VNRS) before injection therapy (baseline) and at 1 week and 1, 3, and 6 months during follow-up. RESULTS All procedures were technically successful and there were no major complications. The mean preinterventional VNRS score was 7.42 and exhibited a statistically significant decrease (P < 0.001) at all follow-up time points: 3.86 ± 1.53 at 1 week, 3.21 ± 2.19 at 1 month, 2.58 ± 2.54 at 3 months, and 2.76 ± 2.63 at 6 months. At 6 months, 14.3 % of the patients reported complete resolution of radicular pain and 38.1 % each had either significant (4-8 VNRS score points) or mild (1-3 VNRS score points) relief of pain; 9.5 % experienced no pain relief. CONCLUSION Magnetic resonance fluoroscopy-guided periradicular cervical spine injection is an accurate, safe, and efficacious treatment option for patients with cervical radicular pain. The technique may be a promising alternative to fluoroscopy- or CT-guided injections of the cervical spine, especially in young patients and in patients requiring repeat injections.
Resumo:
The main purpose of this study was to evaluate the effect that mechanical stresses acting under the slipping driving wheels of agricultural equipment have on the soil’s pore system and water flow process (surface runoff generation during extreme event). The field experiment simulated low slip (1%) and high slip (27%) on a clay loam. The stress on the soil surface and changes in the amounts of water flowing from macropores were simulated using the Tires/tracks And Soil Compaction (TASC) tool and the MACRO model, respectively. Taking a 65 kW tractor on a clay loam as a reference, results showed that an increase in slip of the rear wheels from 1% to 27% caused normal stress to increase from 90.6 kPa to 104.4 kPa at the topsoil level, and the maximum shear contact stress to rise drastically from 6.0 kPa to 61.6 kPa. At 27% slip, topsoil was sheared and displaced over a distance of 0.35 m. Excessive normal and shear stress values with high slip caused severe reductions of the soil’s macroporosity, saturated hydraulic conductivity, and water quantities flowing from topsoil macropores. Assuming that, under conditions of intense rainfall on sloping land, a loss in vertical water flow would mean an increase in surface runoff, we calculated that a rainfall intensity of 100 mm h-1 and a rainfall duration of 1 h would increase the runoff coefficient to 0.79 at low slip and to 1.00 at high slip, indicating that 100% of rainwater would be transformed into surface runoff at high slip. We expect that these effects have a significant impact on soil erosion and floods in steeper terrain (slope > 15°) and across larger surface areas (> 16 m2) than those included in our study.
Resumo:
(31)P MRS magnetization transfer ((31)P-MT) experiments allow the estimation of exchange rates of biochemical reactions, such as the creatine kinase equilibrium and adenosine triphosphate (ATP) synthesis. Although various (31)P-MT methods have been successfully used on isolated organs or animals, their application on humans in clinical scanners poses specific challenges. This study compared two major (31)P-MT methods on a clinical MR system using heteronuclear surface coils. Although saturation transfer (ST) is the most commonly used (31)P-MT method, sequences such as inversion transfer (IT) with short pulses might be better suited for the specific hardware and software limitations of a clinical scanner. In addition, small NMR-undetectable metabolite pools can transfer MT to NMR-visible pools during long saturation pulses, which is prevented with short pulses. (31)P-MT sequences were adapted for limited pulse length, for heteronuclear transmit-receive surface coils with inhomogeneous B1 , for the need for volume selection and for the inherently low signal-to-noise ratio (SNR) on a clinical 3-T MR system. The ST and IT sequences were applied to skeletal muscle and liver in 10 healthy volunteers. Monte-Carlo simulations were used to evaluate the behavior of the IT measurements with increasing imperfections. In skeletal muscle of the thigh, ATP synthesis resulted in forward reaction constants (k) of 0.074 ± 0.022 s(-1) (ST) and 0.137 ± 0.042 s(-1) (IT), whereas the creatine kinase reaction yielded 0.459 ± 0.089 s(-1) (IT). In the liver, ATP synthesis resulted in k = 0.267 ± 0.106 s(-1) (ST), whereas the IT experiment yielded no consistent results. ST results were close to literature values; however, the IT results were either much larger than the corresponding ST values and/or were widely scattered. To summarize, ST and IT experiments can both be implemented on a clinical body scanner with heteronuclear transmit-receive surface coils; however, ST results are much more robust against experimental imperfections than the current implementation of IT.
Resumo:
International agencies and programmes introduced sustainable land management (SLM) to Central Asia after the former Soviet Republics became independent in 1991. An aim of early SLM initiatives was to address challenges linked to the transformation of the agricultural sector from a centrally planned economy to a decentralized market economy. This article analyses the knowledge–action interface in Kyrgyzstan and Tajikistan as it relates to SLM. The analysis focuses on the influence of underlying land management concepts by means of a literature review. Contemporary barriers at the research–action interface were identified using participatory appraisal. And a historically contextualized understanding of the effectiveness of interactions between researchers, policy makers and practitioners is based on an analysis of purposefully selected cases. The study concludes that knowledge of different stakeholder groups is often highly disconnected. Interdisciplinary and transdisciplinary studies are rare, and academic research on SLM has subsequently been ineffective at contributing to substantial benefits for society. Further, researchers, policy makers and practitioners in this context must recognize the differences between SLM and what is often referred to as the equivalent Soviet-era concept—rational use of land resources—and the resulting implications of these differences. The authors recommend the following: creating an enabling environment for SLM research through academic institutional reform removing structural constraints, making research outcomes more effective by applying systems approaches that produce evidence for policy makers on the multiple benefits of SLM, helping land users evaluate SLM strategies and investing in the establishment and maintenance of a multi-stakeholder SLM platform that allows dynamic exchange.
Resumo:
We report on the EPICA Dronning Maud Land (East Antarctica) deep drilling operation. Starting with the scientific questions that led to the outline of the EPICA project, we introduce the setting of sister drillings at NorthGRIP and EPICA Dome C within the European ice-coring community. The progress of the drilling operation is described within the context of three parallel, deep-drilling operations, the problems that occurred and the solutions we developed. Modified procedures are described, such as the monitoring of penetration rate via cable weight rather than motor torque, and modifications to the system (e.g. closing the openings at the lower end of the outer barrel to reduce the risk of immersing the drill in highly concentrated chip suspension). Parameters of the drilling (e.g. core-break force, cutter pitch, chips balance, liquid level, core production rate and piece number) are discussed. We also review the operational mode, particularly in the context of achieved core length and piece length, which have to be optimized for drilling efficiency and core quality respectively. We conclude with recommendations addressing the design of the chip-collection openings and strictly limiting the cable-load drop with respect to the load at the start of the run.
Resumo:
A survey was conducted to generate holistic information on the production and utilization of local white lupin in two lupin growing districts, namely, Mecha and Sekela, representing mid and high altitude areas, respectively in North-western Ethiopia. During the survey, two types of participatory rural appraisal (PRA) techniques, namely, individual farmer interview (61 farmers from Mecha and 51 from Sekela) and group discussion (with 20 farmers from each district) were employed. There are significant differences (P<0.05) between the two study districts for the variables like total land holding, frequency of ploughing during lupin planting, days to maturity, lupin productivity, and number of days of soaking lupin in running water. However, there are no significant differences (P>0.05) between the two study districts for the variables like land allocated for lupin cultivation, lupin seed rate, lupin soaking at home, lupin consumption per family per week and proportion of lupin used for household consumption. The use of the crop as livestock feed is negligible due to its high alkaloid content. It is concluded that the local white lupin in Ethiopia is a valuable multipurpose crop which is being cultivated in the midst of very serious shortage of cropland. Its ability to maintain soil fertility and serve as a source of food in seasons of food scarcity makes it an important crop. However, its bitter taste due to its high alkaloid content remains to be a big challenge and any lupin improvement strategy has to focus on minimizing the alkaloid content of the crop.
Resumo:
The main aim of the methodology presented in this paper is to provide a framework for a participatory process for the appraisal and selection of options to mitigate desertification and land degradation. This methodology is being developed within the EU project DESIRE (www.desire-project.eu/) in collaboration with WOCAT (www.wocat.org). It is used to select promising conservation strategies for test-implementation in each of the 16 degradation and desertification hotspot sites in the Mediterranean and around the world. The methodology consists of three main parts: In a first step, prevention and mitigation strategies already applied at the respective DESIRE study site are identified and listed during a workshop with representatives of different stakeholders groups (land users, policy makers, researchers). The participatory and process-oriented approach initiates a mutual learning process among the different stakeholders by sharing knowledge and jointly reflecting on current problems and solutions related to land degradation and desertification. In the second step these identified, locally applied solutions (technologies and approaches) are assessed with the help of the WOCAT methodology. Comprehensive questionnaires and a database system have been developed to document and evaluate all relevant aspects of technical measures as well as implementation approaches by teams of researchers and specialists, together with land users. This research process ensures systematic assessing and piecing together of local information, together with specific details about the environmental and socio-economic setting. The third part consists of another stakeholder workshop where promising strategies for sustainable land management in the given context are selected, based on the best practices database of WOCAT, including the evaluated locally applied strategies at the DESIRE sites. These promising strategies will be assessed with the help of a selection and decision support tool and adapted for test-implementation at the study site.
Resumo:
Experience is lacking with mineral scaling and corrosion in enhanced geothermal systems (EGS) in which surface water is circulated through hydraulically stimulated crystalline rocks. As an aid in designing EGS projects we have conducted multicomponent reactive-transport simulations to predict the likely characteristics of scales and corrosion that may form when exploiting heat from granitoid reservoir rocks at ∼200 °C and 5 km depth. The specifications of an EGS project at Basel, Switzerland, are used to constrain the model. The main water–rock reactions in the reservoir during hydraulic stimulation and the subsequent doublet operation were identified in a separate paper (Alt-Epping et al., 2013b). Here we use the computed composition of the reservoir fluid to (1) predict mineral scaling in the injection and production wells, (2) evaluate methods of chemical geothermometry and (3) identify geochemical indicators of incipient corrosion. The envisaged heat extraction scheme ensures that even if the reservoir fluid is in equilibrium with quartz, cooling of the fluid will not induce saturation with respect to amorphous silica, thus eliminating the risk of silica scaling. However, the ascending fluid attains saturation with respect to crystalline aluminosilicates such as albite, microcline and chlorite, and possibly with respect to amorphous aluminosilicates. If no silica-bearing minerals precipitate upon ascent, reservoir temperatures can be predicted by classical formulations of silica geothermometry. In contrast, Na/K concentration ratios in the production fluid reflect steady-state conditions in the reservoir rather than albite–microcline equilibrium. Thus, even though igneous orthoclase is abundant in the reservoir and albite precipitates as a secondary phase, Na/K geothermometers fail to yield accurate temperatures. Anhydrite, which is present in fractures in the Basel reservoir, is predicted to dissolve during operation. This may lead to precipitation of pyrite and, at high exposure of anhydrite to the circulating fluid, of hematite scaling in the geothermal installation. In general, incipient corrosion of the casing can be detected at the production wellhead through an increase in H2(aq) and the enhanced precipitation of Fe-bearing aluminosilicates. The appearance of magnetite in scales indicates high corrosion rates.
Resumo:
In this paper we present BitWorker, a platform for community distributed computing based on BitTorrent. Any splittable task can be easily specified by a user in a meta-information task file, such that it can be downloaded and performed by other volunteers. Peers find each other using Distributed Hash Tables, download existing results, and compute missing ones. Unlike existing distributed computing schemes relying on centralized coordination point(s), our scheme is totally distributed, therefore, highly robust. We evaluate the performance of BitWorker using mathematical models and real tests, showing processing and robustness gains. BitWorker is available for download and use by the community.
Resumo:
The quantification of CO2 emissions from anthropogenic land use and land use change (eLUC) is essential to understand the drivers of the atmospheric CO2 increase and to inform climate change mitigation policy. Reported values in synthesis reports are commonly derived from different approaches (observation-driven bookkeeping and process-modelling) but recent work has emphasized that inconsistencies between methods may imply substantial differences in eLUC estimates. However, a consistent quantification is lacking and no concise modelling protocol for the separation of primary and secondary components of eLUC has been established. Here, we review differences of eLUC quantification methods and apply an Earth System Model (ESM) of Intermediate Complexity to quantify them. We find that the magnitude of effects due to merely conceptual differences between ESM and offline vegetation model-based quantifications is ~ 20 % for today. Under a future business-as-usual scenario, differences tend to increase further due to slowing land conversion rates and an increasing impact of altered environmental conditions on land-atmosphere fluxes. We establish how coupled Earth System Models may be applied to separate secondary component fluxes of eLUC arising from the replacement of potential C sinks/sources and the land use feedback and show that secondary fluxes derived from offline vegetation models are conceptually and quantitatively not identical to either, nor their sum. Therefore, we argue that synthesis studies should resort to the "least common denominator" of different methods, following the bookkeeping approach where only primary land use emissions are quantified under the assumption of constant environmental boundary conditions.
Resumo:
Soils are fundamental to ensuring water, energy and food security. Within the context of sus- tainable food production, it is important to share knowledge on existing and emerging tech- nologies that support land and soil monitoring. Technologies, such as remote sensing, mobile soil testing, and digital soil mapping, have the potential to identify degraded and non- /little-responsive soils, and may also provide a basis for programmes targeting the protection and rehabilitation of soils. In the absence of such information, crop production assessments are often not based on the spatio-temporal variability in soil characteristics. In addition, uncertain- ties in soil information systems are notable and build up when predictions are used for monitor- ing soil properties or biophysical modelling. Consequently, interpretations of model-based results have to be done cautiously. As such they provide a scientific, but not always manage- able, basis for farmers and/or policymakers. In general, the key incentives for stakeholders to aim for sustainable management of soils and more resilient food systems are complex at farm as well as higher levels. The same is true of drivers of soil degradation. The decision- making process aimed at sustainable soil management, be that at farm or higher level, also in- volves other goals and objectives valued by stakeholders, e.g. land governance, improved envi- ronmental quality, climate change adaptation and mitigation etc. In this dialogue session we will share ideas on recent developments in the discourse on soils, their functions and the role of soil and land information in enhancing food system resilience.
Resumo:
BACKGROUND & AIMS European and American guidelines have endorsed the Barcelona Clinic Liver Cancer (BCLC) staging system. The aim of this study was to assess the performance of the recently developed Hong Kong Liver Cancer (HKLC) classification as a staging system for hepatocellular carcinoma (HCC) in Europe. METHODS We used a pooled set of 1693 HCC patients combining three prospective European cohorts. Discrimination ability between the nine substages and five stages of the HKLC classification system was assessed. To evaluate the predictive power of the HKLC and BCLC staging systems on overall survival, Nagelkerke pseudo R2, Bayesian Information Criterion and Harrell's concordance index were calculated. The number of patients who would benefit from a curative therapy was assessed for both staging system. RESULTS The HKLC classification in nine substages shows suboptimal discrimination between the staging groups. The classification in five stages shows better discrimination between groups. However, the BCLC classification performs better than the HKLC classification in the ability to predict OS. The HKLC treatment algorithm tags significantly more patients to curative therapy than the BCLC. CONCLUSIONS The BCLC staging system performs better for European patients than the HKLC staging system in predicting OS. Twice more patients are eligible for a curative therapy with the HKLC algorithm, whether this translates in survival benefit remains to be investigated. This article is protected by copyright. All rights reserved.