108 resultados para lacustrine sediments


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated oxygen and carbon isotopes of bulk carbonate and of benthic freshwater ostracods (Candona candida) in a sediment core of Lago Piccolo di Avigliana that was previously analyzed for pollen and loss-on-ignition, in order to reconstruct environmental changes during the late glacial and early Holocene. The depth-age relationship of the sediment core was established using 14 AMS C-14 dates and the Laacher See Tephra. While stable isotopes of bulk carbonates may have been affected by detrital input and, therefore, only indirectly reflect climatic changes, isotopes measured on ostracod shells provide unambiguous evidence for major environmental changes. Oxygen isotope ratios of ostracod shells (delta O-18(C)) increased by similar to 6 parts per thousand at the onset of the Bolling (similar to 14,650 cal BP) and were similar to 2 parts per thousand lower during the Younger Dryas (similar to 12,850 to 11,650 cal BP), indicating a temporal pattern of climate changes similar to the North Atlantic region. However, in contrast to records in that region, delta O-18(C) gradually decreased during the early Holocene, suggesting that compared to the Younger Dryas more humid conditions occurred and that the lake received gradually increasing input of O-18-depleted groundwater or river water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this research the taxonomic structure of diatoms in sediments of high mountain lakes was studied. These lakes are located in Chile between 32°49' and 38°48' S in the Andean Cordillera. A total of 99 diatom taxa distributed in 48 genera were identified and all this taxa are cosmopolitan excepting a Eunotia andinofrequens, Gomphonema punae, Pinnularia araucanensis and Pinnularia acidicola, which are know only for the Southern Hemisphere. The assemblages of diatoms were different in the studied lakes. So the high mountain lakes Ocho, Huifa, Ensueño and Negra, dominated benthic diatoms which are typical of oligotrophic and acid waters as Achnanthidium exiguum, Achnanthidium minutissimum, Encyonema minutum, Pinnularia acidicola and Planothidium lanceolatum. In the assemblages from lakes Galletué, Icalma and Laja planktonic diatoms were more abundant, which are common in alkaline and mesotrophic waters, e.g., Asterionella formosa, Aulacoseira distans, Aulacoseira granulata, Cyclotella stelligera and Rhopalodia gibba.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[1] We present quantitative autumn, summer and annual precipitation and summer temperature reconstructions from proglacial annually laminated Lake Silvaplana, eastern Swiss Alps back to AD 1580. We used X-ray diffraction peak intensity ratios of minerals in the sediment layers (quartz qz, plagioclase pl, amphibole am, mica mi) that are diagnostic for different source areas and hydro-meteorological transport processes in the catchment. XRD data were calibrated with meteorological data (AD 1800/1864–1950) and revealed significant correlations: mi/pl with SON precipitation (r = 0.56, p < 0.05) and MJJAS precipitation (r = 0.66, p < 0.01); qz/mi with MJJAS temperature (r = −0.72, p < 0.01)and qz/am with annual precipitation (r = −0.54, p < 0.05). Geological catchment settings and hydro-meteorological processes provide deterministic explanations for the correlations. Our summer temperature reconstruction reproduces the typical features of past climate variability known from independent data sets. The precipitation reconstructions show a LIA climate moister than today. Exceptionally wet periods in our reconstruction coincide with regional glacier advances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-resolution and highly precise age models for recent lake sediments (last 100–150 years) are essential for quantitative paleoclimate research. These are particularly important for sedimentological and geochemical proxies, where transfer functions cannot be established and calibration must be based upon the relation of sedimentary records to instrumental data. High-precision dating for the calibration period is most critical as it determines directly the quality of the calibration statistics. Here, as an example, we compare radionuclide age models obtained on two high-elevation glacial lakes in the Central Chilean Andes (Laguna Negra: 33°38′S/70°08′W, 2,680 m a.s.l. and Laguna El Ocho: 34°02′S/70°19′W, 3,250 m a.s.l.). We show the different numerical models that produce accurate age-depth chronologies based on 210Pb profiles, and we explain how to obtain reduced age-error bars at the bottom part of the profiles, i.e., typically around the end of the 19th century. In order to constrain the age models, we propose a method with five steps: (i) sampling at irregularly-spaced intervals for 226Ra, 210Pb and 137Cs depending on the stratigraphy and microfacies, (ii) a systematic comparison of numerical models for the calculation of 210Pb-based age models: constant flux constant sedimentation (CFCS), constant initial concentration (CIC), constant rate of supply (CRS) and sediment isotope tomography (SIT), (iii) numerical constraining of the CRS and SIT models with the 137Cs chronomarker of AD 1964 and, (iv) step-wise cross-validation with independent diagnostic environmental stratigraphic markers of known age (e.g., volcanic ash layer, historical flood and earthquakes). In both examples, we also use airborne pollutants such as spheroidal carbonaceous particles (reflecting the history of fossil fuel emissions), excess atmospheric Cu deposition (reflecting the production history of a large local Cu mine), and turbidites related to historical earthquakes. Our results show that the SIT model constrained with the 137Cs AD 1964 peak performs best over the entire chronological profile (last 100–150 years) and yields the smallest standard deviations for the sediment ages. Such precision is critical for the calibration statistics, and ultimately, for the quality of the quantitative paleoclimate reconstruction. The systematic comparison of CRS and SIT models also helps to validate the robustness of the chronologies in different sections of the profile. Although surprisingly poorly known and under-explored in paleolimnological research, the SIT model has a great potential in paleoclimatological reconstructions based on lake sediments