48 resultados para isolates
Resumo:
Yersinia enterocolitica 4/O:3 is the most important human pathogenic bioserotype in Europe and the predominant pathogenic bioserotype in slaughter pigs. Although many studies on the virulence of Y. enterocolitica strains have showed a broad spectrum of detectable factors in pigs and humans, an analysis based on a strict comparative approach and serving to verify the virulence capability of porcine Y. enterocolitica as a source for human yersiniosis is lacking. Therefore, in the present study, strains of biotype (BT) 4 isolated from Swiss slaughter pig tonsils and feces and isolates from human clinical cases were compared in terms of their spectrum of virulence-associated genes (yadA, virF, ail, inv, rovA, ymoA, ystA, ystB and myfA). An analysis of the associated antimicrobial susceptibility pattern completed the characterization. All analyzed BT 4 strains showed a nearly similar pattern, comprising the known fundamental virulence-associated genes yadA, virF, ail, inv, rovA, ymoA, ystA and myfA. Only ystB was not detectable among all analyzed isolates. Importantly, neither the source of the isolates (porcine tonsils and feces, humans) nor the serotype (ST) had any influence on the gene pattern. From these findings, it can be concluded that the presence of the full complement of virulence genes necessary for human infection is common among porcine BT 4 strains. Swiss porcine BT 4 strains not only showed antimicrobial susceptibility to chloramphenicol, cefotaxime, ceftazidime, ciprofloxacin, colistin, florfenicol, gentamicin, kanamycin, nalidixic acid, sulfamethoxazole, streptomycin, tetracycline and trimethoprim but also showed 100% antibiotic resistance to ampicillin. The human BT 4 strains revealed comparable results. However, in addition to 100% antibiotic resistance to ampicillin, 2 strains were resistant to chloramphenicol and nalidixic acid. Additionally, 1 of these strains was resistant to sulfamethoxazole. The results demonstrated that Y. enterocolitica BT 4 isolates from porcine tonsils, as well as from feces, show the same virulence-associated gene pattern and antibiotic resistance properties as human isolates from clinical cases, consistent with the etiological role of porcine BT 4 in human yersiniosis. Thus, cross-contamination of carcasses and organs at slaughter with porcine Y. enterocolitica BT 4 strains, either from tonsils or feces, must be prevented to reduce human yersiniosis.
Resumo:
For the first time, we analyzed the clonality and susceptibility of Burkholderia cepacia complex isolates (n=55) collected during 1998-2013 from 44 Swiss cystic fibrosis (CF)-patients. B. cenocepacia (n=28) and B. multivorans (n=14) were mainly of sequence type (ST) 833 and ST874, respectively; B. contaminans isolates were of ST102. Overall, the following MIC50/90s (mg/l) were obtained: piperacillin/tazobactam (≤ 4/≥ 128), ticarcillin/clavulanate (≥ 256/≥256), ceftazidime (2/≥ 32), aztreonam (16/≥ 32), meropenem (2/8), tobramycin (8/≥ 16), minocycline (≤ 1/16), levofloxacin (≤ 0.5/≥ 16), and trimethoprim/sulfamethoxazole (≤ 0.5/4). This is the first survey providing information on the clonality of Bcc detected in Switzerland. Species identification and antimicrobial susceptibility tests should always be routinely performed to adapt more targeted therapies.
Resumo:
BACKGROUND: Streptococcus pneumoniae causes several human diseases, including pneumonia and meningitis, in which pathology is associated with an excessive inflammatory response. A major inducer of this response is the cholesterol dependent pneumococcal toxin, pneumolysin. Here, we measured the amount of inflammatory cytokine CXCL8 (interleukin (IL)-8) by ELISA released by human nasopharyngeal epithelial (Detroit 562) cells as inflammatory response to a 24 h exposure to different pneumococcal strains. RESULTS: We found pneumolysin to be the major factor influencing the CXCL8 response. Cholesterol and sphingomyelin-containing liposomes designed to sequester pneumolysin were highly effective at reducing CXCL8 levels from epithelial cells exposed to different clinical pneumococcal isolates. These liposomes also reduced CXCL8 response from epithelial cells exposed to pneumolysin knock-out mutants of S. pneumoniae indicating that they also reduce the CXCL8-inducing effect of an unidentified pneumococcal virulence factor, in addition to pneumolysin. CONCLUSION: The results indicate the potential of liposomes in attenuating excessive inflammation as a future adjunctive treatment of pneumococcal diseases.