58 resultados para insulin and glucose sensitivity
Resumo:
Many metabolic hormones, growth hormone (GH), insulin-like growth factor-I (IGF-I) and insulin affect ovarian functions. However, whether ovarian steroid hormones affect metabolic hormones in cattle remains unknown. This study aimed to determine the effect of sex steroids on the plasma profiles of GH, IGF-I and insulin and their receptors in the liver and adipose tissues of dairy cows. Ovariectomized cows (n = 14) were randomly divided into four groups: control group (n = 3) was treated with saline on Day 0; oestradiol (E2) group (n = 3), with saline and 1 mg oestradiol benzoate (EB) on Day 0 and 5, respectively; progesterone (P4) group (n = 4) with two CIDRs (Pfizer Inc., Tokyo, Japan) from Day 0; and E2 + P4 group (n = 4) with two CIDRs on Day 0 that were removed on Day 6 and were immediately injected with 1 mg EB. The animals were euthanized after the experiment, and liver and adipose tissues samples were quantitatively analysed using real-time PCR for the expression of mRNA for the GH (GHR), IGF-I (IGFR-I) and insulin (IR) receptor mRNAs. Oestradiol benzoate significantly increased the number of peaks (p < 0.05), pulse amplitude (p < 0.05) and area under the curve (AUC; p < 0.01) for plasma GH; moreover, it increased plasma IGF-I concentration (p < 0.05), but it had no effect on the plasma insulin profile. P4 significantly decreased the AUC (p < 0.01), compared with the control group, whereas it did not affect the number of peaks and the amplitude of GH pulses. P4 + E2 did not affect the GH pulse profile. E2 increased the mRNA expression of GHR, IGFR-I and IR in the liver (p < 0.05), whereas both P4 and E2 + P4 did not change their expressions. Our results provide evidence that the metabolic and reproductive endocrine axes may regulate each other to ensure optimal reproductive and metabolic function.
Resumo:
The histidine triad nucleotide-binding (Hint2) protein is a mitochondrial adenosine phosphoramidase expressed in liver and pancreas. Its physiological function is unknown. To elucidate the role of Hint2 in liver physiology, the Hint2 gene was deleted. Hint2(-/-) and Hint2(+/+) mice were generated in a mixed C57Bl6/J x 129Sv background. At 20 weeks, the phenotypic changes in Hint2(-/-) relative to Hint2(+/+) mice were an accumulation of hepatic triglycerides, decreased tolerance to glucose, a defective counter-regulatory response to insulin-provoked hypoglycaemia, an increase in plasma interprandial insulin but a decrease in glucose stimulated insulin secretion and defective thermoregulation upon fasting. Leptin mRNA in adipose tissue and plasma leptin were elevated. In mitochondria from Hint2(-/-) hepatocytes, state 3 respiration was decreased, a finding confirmed in HepG2 cells where HINT2 mRNA was silenced. The linked complex II to III electron transfer was decreased in Hint2(-/-) mitochondria, which was accompanied by a lower content of coenzyme Q. HIF-2α expression and the generation of reactive oxygen species were increased. Electron microscopy of mitochondria in Hint2(-/-) mice aged 12 months revealed clustered, fused organelles. The hepatic activities of 3-hydroxyacyl-CoA dehydrogenase short chain and glutamate dehydrogenase (GDH) were decreased by 68% and 60%, respectively, without a change in protein expression. GDH activity was similarly decreased in HINT2-silenced HepG2 cells. When measured in the presence of purified sirtuin 3, latent GDH activity was recovered (126% in Hint2(-/-) vs. 83% in Hint2(+/+) ). This suggests a greater extent of acetylation in Hint2(-/-) than in Hint2(+/+) . Conlusions: Hint2 positively regulates mitochondrial lipid metabolism and respiration, and glucose homeostasis. The absence of Hint2 provokes mitochondrial deformities and a change in the pattern of acetylation of selected proteins. (HEPATOLOGY 2012.).
Resumo:
Metformin is treatment of choice for the metabolic consequences seen in polycystic ovary syndrome for its insulin-sensitizing and androgen-lowering properties. Yet, the mechanism of action remains unclear. Two potential targets for metformin regulating steroid and glucose metabolism are AMP-activated protein kinase (AMPK) signaling and the complex I of the mitochondrial respiratory chain. Androgen biosynthesis requires steroid enzymes 17α-Hydroxylase/17,20 lyase (CYP17A1) and 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2), which are overexpressed in ovarian cells of polycystic ovary syndrome women. Therefore, we aimed to understand how metformin modulates androgen production using NCI-H295R cells as an established model of steroidogenesis. Similar to in vivo situation, metformin inhibited androgen production in NCI cells by decreasing HSD3B2 expression and CYP17A1 and HSD3B2 activities. The effect of metformin on androgen production was dose dependent and subject to the presence of organic cation transporters, establishing an important role of organic cation transporters for metformin's action. Metformin did not affect AMPK, ERK1/2, or atypical protein kinase C signaling. By contrast, metformin inhibited complex I of the respiratory chain in mitochondria. Similar to metformin, direct inhibition of complex I by rotenone also inhibited HSD3B2 activity. In conclusion, metformin inhibits androgen production by mechanisms targeting HSD3B2 and CYP17-lyase. This regulation involves inhibition of mitochondrial complex I but appears to be independent of AMPK signaling.
Resumo:
Reduced activity of 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) plays a role in essential hypertension and the sensitivity of blood pressure to dietary salt. Nonconservative mutations in the coding region are extremely rare and do not explain the variable 11beta-HSD2 activity. We focused therefore on the 5'-regulatory region and identified and characterized the first promoter polymorphisms. Transfections of variants G-209A and G-126A into SW620 cells reduced promoter activity and affinity for activators nuclear factor 1 (NF1) and Sp1. Chromatin immunoprecipitation revealed Sp1, NF1, and glucocorticoid receptor (GR) binding to the HSD11B2 promoter. Dexamethasone induced expression of mRNA and activity of HSD11B2. GR and/or NF1 overexpression increased endogenous HSD11B2 mRNA and activity. GR complexes cooperated with NF1 to activate HSD11B2, an effect diminished in the presence of the G-209A variant. When compared to salt-resistant subjects (96), salt-sensitive volunteers (54) more frequently had the G-209A variant, higher occurrence of alleles A4/A7 of polymorphic microsatellite marker, and higher urinary ratios of cortisol to cortisone metabolites. First, we conclude that the mechanism of glucocorticoid-induced HSD11B2 expression is mainly mediated by cooperation between GR and NF1 on the HSD11B2 promoter and, second, that the newly identified promoter variants reduce activity and cooperation of cognate transcription factors, resulting in diminished HSD11B2 transcription, an effect favoring salt sensitivity.
Resumo:
BACKGROUND Anecdotal evidence suggests that the sensitivity and specificity of a diagnostic test may vary with disease prevalence. Our objective was to investigate the associations between disease prevalence and test sensitivity and specificity using studies of diagnostic accuracy. METHODS We used data from 23 meta-analyses, each of which included 10-39 studies (416 total). The median prevalence per review ranged from 1% to 77%. We evaluated the effects of prevalence on sensitivity and specificity using a bivariate random-effects model for each meta-analysis, with prevalence as a covariate. We estimated the overall effect of prevalence by pooling the effects using the inverse variance method. RESULTS Within a given review, a change in prevalence from the lowest to highest value resulted in a corresponding change in sensitivity or specificity from 0 to 40 percentage points. This effect was statistically significant (p < 0.05) for either sensitivity or specificity in 8 meta-analyses (35%). Overall, specificity tended to be lower with higher disease prevalence; there was no such systematic effect for sensitivity. INTERPRETATION The sensitivity and specificity of a test often vary with disease prevalence; this effect is likely to be the result of mechanisms, such as patient spectrum, that affect prevalence, sensitivity and specificity. Because it may be difficult to identify such mechanisms, clinicians should use prevalence as a guide when selecting studies that most closely match their situation.
Resumo:
Given a reproducing kernel Hilbert space (H,〈.,.〉)(H,〈.,.〉) of real-valued functions and a suitable measure μμ over the source space D⊂RD⊂R, we decompose HH as the sum of a subspace of centered functions for μμ and its orthogonal in HH. This decomposition leads to a special case of ANOVA kernels, for which the functional ANOVA representation of the best predictor can be elegantly derived, either in an interpolation or regularization framework. The proposed kernels appear to be particularly convenient for analyzing the effect of each (group of) variable(s) and computing sensitivity indices without recursivity.
Resumo:
Trans-10,cis-12 conjugated linoleic acid (CLA) supplementation causes milk fat depression in dairy cows, but CLA effects on glucose metabolism are not clear. The objective of the study was to investigate glucose metabolism, especially endogenous glucose production (eGP) and glucose oxidation (GOx), as well as hepatic genes involved in endogenous glucose production in Holstein cows supplemented either with 50 g of rumen-protected CLA (9% trans-10,cis-12 and 10% cis-9,trans-11; CLA; n=10) or 50 g of control fat (24% C18:2; Ctrl; n=10) from wk 2 before parturition to wk 9 of lactation. Animal performance data were recorded and blood metabolites and hormones were taken weekly from 2 wk before to 12 wk after parturition. During wk 3 and 9 after parturition, glucose tolerance tests were performed and eGP and GOx were measured by [U-(13)C] glucose infusion. Liver biopsies were taken at the same time to measure total fat and glycogen concentrations and gene expression of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and carnitine palmitoyl-transferase 1. Conjugated linoleic acid feeding reduced milk fat, but increased milk lactose output; milk yield was higher starting 5 wk after parturition in CLA-fed cows than in Ctrl-fed cows. Energy balance was more negative during CLA supplementation, and plasma concentrations of glucose were higher immediately after calving in CLA-fed cows. Conjugated linoleic acid supplementation did not affect insulin release during glucose tolerance tests, but reduced eGP in wk 3, and eGP and GOx increased with time after parturition. Hepatic gene expression of cytosolic phosphoenolpyruvate carboxykinase tended to be lower in CLA-fed cows than in Ctrl-fed cows. In spite of lower eGP in CLA-fed cows, lactose output and plasma glucose concentrations were greater in CLA-fed cows than in Ctrl-fed cows. This suggests a CLA-related glucose sparing effect most likely due to lower glucose utilization for milk fat synthesis and probably because of a more efficient whole-body energy utilization in CLA-fed cows.
Resumo:
Elevation of ketone bodies in dairy cows frequently occurs in early lactation, usually concomitantly with a lack of energy and glucose. The objective of this study was to induce an elevated plasma β-hydroxybutyrate (BHBA) concentration over 48 h in mid-lactating dairy cows (i.e., during a period of positive energy balance and normal glucose plasma concentrations). Effects of BHBA infusion on feed intake, metabolism, and performance were investigated. Thirteen cows were randomly assigned to 1 of 2 infusion groups, including an intravenous infusion with Na-dl-β-OH-butyrate (1.7 mol/L) to achieve a plasma concentration of 1.5 to 2.0 mmol/L of BHBA (HyperB; n=5), or an infusion of 0.9% saline solution (control; n=8). Blood was sampled before and hourly during the 48 h of infusion. In the liver, mRNA transcripts related to gluconeogenesis (pyruvate carboxylase, glucose 6-phosphatase, mitochondrial phosphoenolpyruvate carboxykinase), phosphofructokinase, pyruvate dehydrogenase complex, and fatty acid synthesis (acetyl-coenzyme A carboxylase, fatty acid synthase) were measured by real-time PCR. Glyceraldehyde-3-phosphate dehydrogenase and ubiquitin were used as housekeeping genes. Changes (difference between before and after 48-h infusion) during the infusion period were evaluated by ANOVA with treatment as fixed effect, and area under the curve of variables was calculated on the second day of experiment. The plasma BHBA concentration in HyperB cows was 1.74 ± 0.02 mmol/L (mean ± SE) compared with 0.59 ± 0.02 mmol/L for control cows. The change in feed intake, milk yield, and energy corrected milk did not differ between the 2 experimental groups. Infusion of BHBA reduced the plasma glucose concentration (3.47 ± 0.11 mmol/L) in HyperB compared with control cows (4.11 ± 0.08 mmol/L). Plasma glucagon concentration in HyperB was lower than the control group. All other variables measured in plasma were not affected by treatment. In the liver, changes in mRNA abundance for the selected genes were similar between 2 groups. Results demonstrate that intravenous infusion of BHBA decreased plasma glucose concentration in dairy cows, but this decrease could not be explained by alterations in insulin concentrations or key enzymes related to gluconeogenesis. Declined glucose concentration is likely functionally related to decreased plasma glucagon concentration.
Resumo:
GOALS The aim of this report is to delineate the clinical, pathologic, and enteroendocrine (EE) features of prohormone convertase 1/3 (PC1/3) deficiency in children. BACKGROUND Prohormone convertases play a pivotal role in the activation of biologically inactive hormones. Congenital defects in the EE axis, such as PC1/3 deficiency, have been rarely reported and their pathophysiological mechanisms are largely unknown. STUDY EE function and pathology was evaluated in 4 males (1, 2, 7, and 10 y old) from 2 families with PC1/3 deficiency at a university children's hospital. Clinical course, pathology analysis including immunohistochemistry for PC1/3, PC2, and glucagon-like peptide 1 (GLP-1) and electron microscopy, as well as EE function tests (GLP-1, GLP-2, oral glucose tolerance test) were performed. RESULTS All (n=4) suffered from congenital severe diarrhea associated with malabsorption. The diarrhea improved during the first year of life and hyperphagia with excessive weight gain (BMI>97th percentile) became the predominant phenotype at an older age. Analysis of the enteroendocrine axis revealed high proinsulin levels (57 to 1116 pmol/L) in all patients, low serum GLP-2 levels, and impaired insulin and GLP-1 secretion after an oral glucose tolerance test at a young age, with improvement in 1 older child tested. Electron microscopy showed normal ultrastructure of enterocytes and EE cells. Immunohistochemistry revealed normal expression of chromogranin A, a marker of EE cells but markedly reduced immunostaining for PC1/3 and PC2 in all patients. CONCLUSIONS PC1/3 deficiency is associated with an age dependent, variable clinical phenotype caused by severe abnormalities in intestinal and EE functions. Serum level of proinsulin can be used as an effective screening tool.
Resumo:
AIMS/HYPOTHESIS The aims of this study were to analyse the changes of serum leptin in newly diagnosed children and adolescents with Type I (insulin-dependent) diabetes mellitus after insulin treatment and to examine the possible impact of ketoacidosis on these changes. METHODS Baseline serum leptin concentrations were measured in 28 newly diagnosed Type I diabetic patients [age 8.75 +/- 4.05 years (means +/- SD); BMI 15.79 +/- 2.47 kg/m(2); HbA(1 c) 11.3 +/- 1.9 %] with (n = 18) and without (n = 10) ketoacidosis before commencement of insulin treatment, at the time of diagnosis. Thereafter, during a 4-day course of continuous intravenous insulin injection to gain and maintain euglycaemia, serum leptin concentrations were assessed. RESULTS Baseline serum leptin concentrations, adjusted to age, BMI, sex and pubertal stage, differed among these patients. There was, however, an increase of leptin in all subjects from 1.37 +/- 0.56 ng/ml (mean +/- SD) up to 2.97 +/- 1.52 ng/ml by 117 % (p < 0.0001) after insulin therapy. On average, peak serum leptin concentration was obtained after 42 h of insulin treatment. Further, there was no difference in the mean increase of serum leptin concentrations in the two groups, namely with and without ketoadicosis, of insulin-dependent diabetic children and adolescents. In addition, there was no correlation between serum leptin concentrations and correction of ketoacidosis during insulin treatment. CONCLUSIONS/INTERPRETATION Insulin increases serum leptin, within 1 day, in children and adolescents with newly diagnosed Type I diabetes. Ketoacidosis does not influence this interaction between insulin and leptin.
Resumo:
BACKGROUND/OBJECTIVES High intake of added sweeteners is considered to have a causal role in the pathogenesis of cardiometabolic disorders. Especially, high-fructose intake is regarded as potentially harmful to cardiometabolic health. It may cause not only weight gain but also low-grade inflammation, which represents an independent risk factor for developing type 2 diabetes and cardiovascular disease. In particular, fructose has been suggested to induce plasminogen activator inhibitor-1 (PAI-1) expression in the liver and to increase circulating inflammatory cytokines. We therefore aimed to investigate, whether high-fructose diet has an impact on PAI-1, monocyte chemoattractant protein-1 (MCP-1), e-selectin and C-reactive protein (CRP) concentrations in healthy humans. SUBJECTS/METHODS We studied 20 participants (12 males and 8 females) of the TUebingen FRuctose Or Glucose study. This is an exploratory, parallel, prospective, randomized, single-blinded, outpatient, hypercaloric, intervention study. The participants had a mean age of 30.9 ± 2.1 years and a mean body mass index of 26.0 ± 0.5 kg/m(2) and they received 150 g of either fructose or glucose per day for 4 weeks.Results:There were neither significant changes of PAI-1, MCP-1, e-selectin and CRP after fructose (n=10) and glucose (n=10) intervention nor treatment effects (all P>0.2). Moreover, we did not observe longitudinal associations of the inflammatory parameters with triglycerides, liver fat, visceral fat and body weight in the fructose group. CONCLUSIONS Temporary high-fructose intake does not seem to cause inflammation in apparently healthy people in this secondary analysis of a small feeding trial.
Resumo:
The increasing role for structured and personalized self-monitoring of blood glucose (SMBG) in management of type 2 diabetes has been underlined by randomized and prospective clinical trials. These include Structured Testing Program (or STeP), St. Carlos, Role of Self-Monitoring of Blood Glucose and Intensive Education in Patients with Type 2 Diabetes Not Receiving Insulin, and Retrolective Study Self-Monitoring of Blood Glucose and Outcome in Patients with Type 2 Diabetes (or ROSSO)-in-praxi follow-up. The evidence for the benefit of SMBG both in insulin-treated and non-insulin-treated patients with diabetes is also supported by published reviews, meta-analyses, and guidelines. A Cochrane review reported an overall effect of SMBG on glycemic control up to 6 months after initiation, which was considered to subside after 12 months. Particularly, the 12-month analysis has been criticized for the inclusion of a small number of studies and the conclusions drawn. The aim of this article is to review key publications on SMBG and also to put them into perspective with regard to results of the Cochrane review and current aspects of diabetes management.
Resumo:
Hyperketonemia interferes with the metabolic regulation in dairy cows. It is assumed that metabolic and endocrine changes during hyperketonemia also affect metabolic adaptations during inflammatory processes. We therefore studied systemic and local intramammary effects of elevated plasma β-hydroxybutyrate (BHBA) before and during the response to an intramammary lipopolysaccharide (LPS) challenge. Thirteen dairy cows received intravenously either a Na-DL-β-OH-butyrate infusion (n = 5) to achieve a constant plasma BHBA concentration (1.7 ± 0.1 mmol/L), with adjustments of the infusion rates made based on immediate measurements of plasma BHBA every 15 min, or an infusion with a 0.9% NaCl solution (control; n = 8) for 56 h. Infusions started at 0900 h on d 1 and continued until 1700 h 2 d later. Two udder quarters were challenged with 200 μg of Escherichia coli LPS and 2 udder quarters were treated with 0.9% saline solution as control quarters at 48 h after the start of infusion. Blood samples were taken at 1 wk and 2h before the start of infusions as reference samples and hourly during the infusion. Mammary gland biopsies were taken 1 wk before, and 48 and 56 h (8h after LPS challenge) after the start of infusions. The mRNA abundance of key factors related to BHBA and fatty acid metabolism, and glucose transporters was determined in mammary tissue biopsies. Blood samples were analyzed for plasma glucose, BHBA, nonesterified fatty acid, urea, insulin, glucagon, and cortisol concentrations. Differences were not different for effects of BHBA infusion on the mRNA abundance of any of the measured target genes in the mammary gland before LPS challenge. Intramammary LPS challenge increased plasma glucose, cortisol, glucagon, and insulin concentrations in both groups but increases in plasma glucose and glucagon concentration were less pronounced in the Na-DL-β-OH-butyrate infusion group than in controls. In response to LPS challenge, plasma BHBA concentration decreased in controls and decreased also slightly in the BHBA-infused animals because the BHBA concentration could not be fully maintained despite a rapid increase in BHBA infusion rate. The change in mRNA abundance of citrate synthase in LPS quarters was significant between the 2 treatment groups. The results indicate that elevated circulating BHBA concentration inhibits gluconeogenesis before and during immune response to LPS challenge, likely because BHBA can replace glucose as an energy source.