67 resultados para imultaneous localization and mapping


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Equine sarcoids (ES) are common, difficult to treat, and have high recurrence rates. Viscum album extracts (VAE) are used in human cancer treatment. HYPOTHESIS: That therapy with VAE (Iscador P) is effective in the treatment of ES. ANIMALS: Fifty-three horses (444 ES); 42 were treated with VAE or placebo as monotherapy; 11 were treated with VAE or placebo after selective excision of ES. METHODS: Prospective, randomised, blinded, clinical trial. Horses were randomly assigned to treatment (VAE; n=32) or control group (Placebo; n=21). One milliliter of VAE (Iscador P) in increasing concentrations from 0.1 to 20 mg/mL or physiological NaCl solution was given SC 3 times a week over 105 days. Number, localization, and type of the ES were documented over 12 months. A subset of 163 clinically diagnosed equine sarcoid (CDES) lesions (95 VAE, 68 Placebo) was evaluated in detail, considering clinical findings and tumor volume. RESULTS: No undesired adverse effects were observed except for mild edema at the injection site in 5 of 32 horses (16%). Complete or partial regression was observed in 13 horses of the VAE group (41%) and in 3 of the control horses (14%; P<.05). After VAE treatment, 48 of 95 CDES (67%) showed an improvement compared with 17 of 68 CDES in the control group (40%; P<.01). Twenty-seven CDES had disappeared completely in the VAE group (38%) compared with 9 CDES in the control group (13% NS). CONCLUSIONS AND CLINICAL IMPORTANCE: VAE (Iscador P) represents a safe and effective treatment for CDES.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To migrate efficiently through the interstitium, dendritic cells (DCs) constantly adapt their shape to the given structure of the extracellular matrix and follow the path of least resistance. It is known that this amoeboid migration of DCs requires Cdc42, yet the upstream regulators critical for localization and activation of Cdc42 remain to be determined. Mutations of DOCK8, a member of the atypical guanine nucleotide exchange factor family, causes combined immunodeficiency in humans. In the present study, we show that DOCK8 is a Cdc42-specific guanine nucleotide exchange factor that is critical for interstitial DC migration. By generating the knockout mice, we found that in the absence of DOCK8, DCs failed to accumulate in the lymph node parenchyma for T-cell priming. Although DOCK8-deficient DCs migrated normally on 2-dimensional surfaces, DOCK8 was required for DCs to crawl within 3-dimensional fibrillar networks and to transmigrate through the subcapsular sinus floor. This function of DOCK8 depended on the DHR-2 domain mediating Cdc42 activation. DOCK8 deficiency did not affect global Cdc42 activity. However, Cdc42 activation at the leading edge membrane was impaired in DOCK8-deficient DCs, resulting in a severe defect in amoeboid polarization and migration. Therefore, DOCK8 regulates interstitial DC migration by controlling Cdc42 activity spatially.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cannabinoid G protein-coupled receptors (GPCRs) CB₁ and CB₂ are expressed in different peripheral cells. Localization of GPCRs in the cell membrane determines signaling via G protein pathways. Here we show that unlike in transfected cells, CB receptors in cell lines and primary human cells are not internalized upon agonist interaction, but move between cytoplasm and cell membranes by ligand-independent trafficking mechanisms. Even though CB receptors are expressed in many cells of peripheral origin they are not always localized in the cell membrane and in most cancer cell lines the ratios between CB₁ and CB₂ receptor gene and surface expression vary significantly. In contrast, CB receptor cell surface expression in HL60 cells is subject to significant oscillations and CB₂ receptors form oligomers and heterodimers with CB₁ receptors, showing synchronized surface expression, localization and trafficking. We show that hydrogen peroxide and other nonspecific protein tyrosine phosphatase inhibitors (TPIs) such as phenylarsine oxide trigger both CB₂ receptor internalization and externalization, depending on receptor localization. Phorbol ester-mediated internalization of CB receptors can be inhibited via this switch. In primary human immune cells hydrogen peroxide and other TPIs lead to a robust internalization of CB receptors in monocytes and an externalization in T cells. This study describes, for the first time, the dynamic nature of CB receptor trafficking in the context of a biochemical switch, which may have implications for studies on the cell-type specific effects of cannabinoids and our understanding of the regulation of CB receptor cell surface expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Patients late after open-heart surgery may develop dual-loop reentrant atrial arrhythmias, and mapping and catheter ablation remain challenging despite computer-assisted mapping techniques. Objectives The purpose of the study was to demonstrate the prevalence and characteristics of dual-loop reentrant arrhythmias, and to define the optimal mapping and ablation strategy. Methods Fourty consecutive patients (mean age 52+/-12 years) with intra-atrial reentrant tachycardia (IART) after open-heart surgery (with an incision of the right atrial free wall) were studied. Dual-loop IART was defined as the presence of two simultaneous atrial circuits. Following an abrupt tachycardia change during radiofrequency (RF) ablation, electrical disconnection of the targeted reentry isthmus from the remaining circuit was demonstrated by entrainment mapping. Furthermore, the second circuit loop was localized using electroanatomic mapping and/or entrainment mapping. Results Dual-loop IART was demonstrated in 8 patients (20%, 5 patients with congenital heart disease, 3 with acquired heart disease). Dual-loop IART included an isthmus-dependant atrial flutter combined with a reentry related to the atriotomy scar. The diagnosis of dual-loop IART required the comparison of entrainment mapping before and after tachycardiamodification. Overall, 35 patients had successful RF ablation (88%). Success rates were lower in patients with dual-loop IART than in patient without dual-loop IART. Ablation failures in 3 patients with dual-loop IART were related to the inability to properly transect the second tachycardia isthmus in the right atrial free wall. Conclusions Dual-loop IART is relatively common after heart surgery involving a right atriotomy. Abrupt tachycardia change and specific entrainment mapping maneuvers demonstrate these circuits. Electroanatomic mapping appears to be important to assist catheter ablation of periatriotomy circuits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image-guided, computer-assisted neurosurgery has emerged to improve localization and targeting, to provide a better anatomic definition of the surgical field, and to decrease invasiveness. Usually, in image-guided surgery, a computer displays the surgical field in a CT/MR environment, using axial, coronal or sagittal views, or even a 3D representation of the patient. Such a system forces the surgeon to look away from the surgical scene to the computer screen. Moreover, this kind of information, being pre-operative imaging, can not be modified during the operation, so it remains valid for guidance in the first stage of the surgical procedure, and mainly for rigid structures like bones. In order to solve the two constraints mentioned before, we are developing an ultrasoundguided surgical microscope. Such a system takes the advantage that surgical microscopy and ultrasound systems are already used in neurosurgery, so it does not add more complexity to the surgical procedure. We have integrated an optical tracking device in the microscope and an augmented reality overlay system with which we avoid the need to look away from the scene, providing correctly aligned surgical images with sub-millimeter accuracy. In addition to the standard CT and 3D views, we are able to track an ultrasound probe, and using a previous calibration and registration of the imaging, the image obtained is correctly projected to the overlay system, so the surgeon can always localize the target and verify the effects of the intervention. Several tests of the system have been already performed to evaluate the accuracy, and clinical experiments are currently in progress in order to validate the clinical usefulness of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Peptide receptors, overexpressed in specific cancers, represent new diagnostic and therapeutic targets. In this study, receptors for the gastrin-releasing peptide (GRP), and other members of the bombesin-family of peptides, were evaluated in ovarian neoplasms. METHODS: 75 primary, secondary and metastatic ovarian tumors were investigated for their bombesin-receptor subtype expression, incidence, localization and density using in vitro autoradiography on tissue sections with the universal radioligand (125)I-[D-Tyr(6), beta-Ala(11), Phe(13), Nle(14)]-bombesin(6-14) and the GRP-receptor subtype-preferring (125)I-[Tyr(4)]-bombesin. RESULTS: GRP-receptors were detected in 42/61 primary ovarian tumors; other bombesin-receptor subtypes (BB1, bb3) were rarely present (3/61). Two different tissue compartments expressed GRP-receptors: the tumoral vasculature was the predominant site of GRP-receptor expression (38/61), whereas neoplastic cells more rarely expressed GRP-receptors (14/61). GRP-receptor positive vessels were present in the various classes of ovarian tumors; generally, malignant tumors had a higher incidence of GRP-receptor positive vessels compared to their benign counterparts. The prevalence of such vessels was particularly high in ovarian carcinomas (16/19) and their metastases (5/5). The GRP-receptors were expressed in high density in the muscular vessel wall. Normal ovary (n=10) lacked GRP-receptors. CONCLUSIONS: The large amounts of GRP-receptors in ovarian tumor vessels suggest a role in tumoral vasculature and possibly angiogenesis. Further, these vessels might be targeted in vivo with bombesin analogs for diagnosis or for therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Diffusion-weighted MRI is sensitive to molecular motion and has been applied to the diagnosis of stroke. Our intention was to investigate its usefulness in patients with brain tumor and, in particular, in the perilesional edema. METHODS: We performed MRI of the brain, including diffusion-weighted imaging and mapping of the apparent diffusion coefficient (ADC), in 16 patients with brain tumors (glioblastomas, low-grade gliomas and metastases). ADC values were determined by the use of regions of interest positioned in areas of high signal intensities as seen on T2-weighted images and ADC maps. Measurements were taken in the tumor itself, in the area of perilesional edema and in the healthy contralateral brain. RESULTS: ADC mapping showed higher values of peritumoral edema in patients with glioblastoma (1.75 x 10(-3)mm(2)/s) and metastatic lesions (1.61 x 10(-3)mm(2)/s) compared with those who had low-grade glioma (1.40 x10(-3)mm(2)/s). The higher ADC values in the peritumoral zone were associated with lower ADC values in the tumor itself. CONCLUSIONS: The higher ADC values in the more malignant tumors probably reflect vasogenic edema, thereby allowing their differentiation from other lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been suggested that some adult bone marrow cells (BMC) can localize to the lung and develop tissue-specific characteristics including those of pulmonary epithelial cells. Here, we show that the combination of mild airway injury (naphthalene-induced) as a conditioning regimen to direct the site of BMC localization and transtracheal delivery of short-term cultured BMC enhances airway localization and adoption of an epithelial-like phenotype. Confocal analysis of airway and alveolar-localized BMC (fluorescently labeled) with epithelial markers shows expression of the pulmonary epithelial proteins, Clara cell secretory protein, and surfactant protein C. To confirm epithelial gene expression by BMC, we generated transgenic mice expressing green fluorescent protein (GFP) driven by the epithelial-specific cytokeratin-18 promoter and injected BMC from these mice transtracheally into wild-type recipients after naphthalene-induced airway injury. BMC retention in the lung was observed for at least 120 days following cell delivery with increasing GFP transgene expression over time. Some BMC cultured in vitro over time also expressed GFP transgene, suggesting epithelial transdifferentiation of the BMC. The results indicate that targeted delivery of BMC can promote airway regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mediastinal mass syndrome remains an anaesthetic challenge that cannot be underestimated. Depending on the localization and the size of the mediastinal tumour, the clinical presentation is variable ranging from a complete lack of symptoms to severe cardiorespiratory problems. The administration of general anaesthesia can be associated with acute intraoperative or postoperative cardiorespiratory decompensation that may result in death due to tumour-related compression syndromes. The role of the anaesthesiologist, as a part of the interdisciplinary treatment team, is to ensure a safe perioperative period. However, there is still no structured protocol available for perioperative anaesthesiological procedure. The aim of this article is to summarize the genesis of and the diagnostic options for mediastinal mass syndrome and to provide a solid detailed methodology for its safe perioperative management based on a review of the latest literature and our own clinical experiences. Proper anaesthetic management of patients with mediastinal mass syndrome begins with an assessment of the preoperative status, directed foremost at establishing the localization of the tumour and on the basis of the clinical and radiological findings, discerning whether any vital mediastinal structures are affected. We have found it helpful to assign 'severity grade' (using a three-grade clinical classification scale: 'safe', 'uncertain', 'unsafe'), whereby each stage triggers appropriate action in terms of staffing and apparatus, such as the provision of alternatives for airway management, cardiopulmonary bypass and additional specialists. During the preoperative period, we are guided by a 12-point plan that also takes into account the special features of transportation into the operating theatre and patient monitoring. Tumour compression on the airways or the great vessels may create a critical respiratory and/or haemodynamic situation, and therefore the standard of intraoperative management includes induction of anaesthesia in the operating theatre on an adjustable surgical table, the use of short-acting anaesthetics, avoidance of muscle relaxants and maintenance of spontaneous respiration. In the case of severe clinical symptoms and large mediastinal tumours, we consider it absolutely essential to cannulate the femoral vessels preoperatively under local anaesthesia and to provide for the availability of cardiopulmonary bypass in the operating theatre, should extracorporeal circulation become necessary. The benefits of establishing vascular access under local anaesthesia clearly outweigh any associated degree of patient discomfort. In the case of patients classified as 'safe' or 'uncertain', a preoperative consensus with the surgeons should be reached as to the anaesthetic approach and the management of possible complications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: A precise, non-invasive, non-toxic, repeatable, convenient and inexpensive follow-up of renal transplants, especially following biopsies, is in the interest of nephrologists. Formerly, the rate of biopsies leading to AV fistulas had been underestimated. Imaging procedures suited to a detailed judgement of these vascular malformations are to be assessed. METHODS: Three-dimensional (3D) reconstruction techniques of ultrasound flow-directed and non-flow-directed energy mode pictures were compared with a standard procedure, gadolinium-enhanced nuclear magnetic resonance imaging angiography (MRA) using the phase contrast technique. RESULTS: Using B-mode and conventional duplex information, AV fistulas were localized in the upper pole of the kidney transplant of the index patient. The 3D reconstruction provided information about the exact localization and orientation of the fistula in relation to other vascular structures, and the flow along the fistula. The MRA provided localization and orientation information, but less functional information. Flow-directed and non-flow-directed energy mode pictures could be reconstructed to provide 3D information about vascular malformations in transplanted kidneys. CONCLUSION: In transplanted kidneys, 3D-ultrasound angiography may be equally as effective as MRA in localizing and identifying AV malformations. Advantages of the ultrasound method are that it is cheaper, non-toxic, non-invasive, more widely availability and that it even provides more functional information. Future prospective studies will be necessary to evaluate the two techniques further.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fusion toxins used for cancer-related therapy have demonstrated short circulation half-lives, which impairs tumor localization and, hence, efficacy. Here, we demonstrate that the pharmacokinetics of a fusion toxin composed of a designed ankyrin repeat protein (DARPin) and domain I–truncated Pseudomonas Exotoxin A (PE40/ETA″) can be significantly improved by facile bioorthogonal conjugation with a polyethylene glycol (PEG) polymer at a unique position. Fusion of the anti-EpCAM DARPin Ec1 to ETA″ and expression in methionine-auxotrophic E. coli enabled introduction of the nonnatural amino acid azidohomoalanine (Aha) at position 1 for strain-promoted click PEGylation. PEGylated Ec1-ETA″ was characterized by detailed biochemical analysis, and its potential for tumor targeting was assessed using carcinoma cell lines of various histotypes in vitro, and subcutaneous and orthotopic tumor xenografts in vivo. The mild click reaction resulted in a well-defined mono-PEGylated product, which could be readily purified to homogeneity. Despite an increased hydrodynamic radius resulting from the polymer, the fusion toxin demonstrated high EpCAM-binding activity and retained cytotoxicity in the femtomolar range. Pharmacologic analysis in mice unveiled an almost 6-fold increase in the elimination half-life (14 vs. 82 minutes) and a more than 7-fold increase in the area under the curve (AUC) compared with non-PEGylated Ec1-ETA″, which directly translated in increased and longer-lasting effects on established tumor xenografts. Our data underline the great potential of combining the inherent advantages of the DARPin format with bioorthogonal click chemistry to overcome the limitations of engineering fusion toxins with enhanced efficacy for cancer-related therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various applications for the purposes of event detection, localization, and monitoring can benefit from the use of wireless sensor networks (WSNs). Wireless sensor networks are generally easy to deploy, with flexible topology and can support diversity of tasks thanks to the large variety of sensors that can be attached to the wireless sensor nodes. To guarantee the efficient operation of such a heterogeneous wireless sensor networks during its lifetime an appropriate management is necessary. Typically, there are three management tasks, namely monitoring, (re) configuration, and code updating. On the one hand, status information, such as battery state and node connectivity, of both the wireless sensor network and the sensor nodes has to be monitored. And on the other hand, sensor nodes have to be (re)configured, e.g., setting the sensing interval. Most importantly, new applications have to be deployed as well as bug fixes have to be applied during the network lifetime. All management tasks have to be performed in a reliable, time- and energy-efficient manner. The ability to disseminate data from one sender to multiple receivers in a reliable, time- and energy-efficient manner is critical for the execution of the management tasks, especially for code updating. Using multicast communication in wireless sensor networks is an efficient way to handle such traffic pattern. Due to the nature of code updates a multicast protocol has to support bulky traffic and endto-end reliability. Further, the limited resources of wireless sensor nodes demand an energy-efficient operation of the multicast protocol. Current data dissemination schemes do not fulfil all of the above requirements. In order to close the gap, we designed the Sensor Node Overlay Multicast (SNOMC) protocol such that to support a reliable, time-efficient and energy-efficient dissemination of data from one sender node to multiple receivers. In contrast to other multicast transport protocols, which do not support reliability mechanisms, SNOMC supports end-to-end reliability using a NACK-based reliability mechanism. The mechanism is simple and easy to implement and can significantly reduce the number of transmissions. It is complemented by a data acknowledgement after successful reception of all data fragments by the receiver nodes. In SNOMC three different caching strategies are integrated for an efficient handling of necessary retransmissions, namely, caching on each intermediate node, caching on branching nodes, or caching only on the sender node. Moreover, an option was included to pro-actively request missing fragments. SNOMC was evaluated both in the OMNeT++ simulator and in our in-house real-world testbed and compared to a number of common data dissemination protocols, such as Flooding, MPR, TinyCubus, PSFQ, and both UDP and TCP. The results showed that SNOMC outperforms the selected protocols in terms of transmission time, number of transmitted packets, and energy-consumption. Moreover, we showed that SNOMC performs well with different underlying MAC protocols, which support different levels of reliability and energy-efficiency. Thus, SNOMC can offer a robust, high-performing solution for the efficient distribution of code updates and management information in a wireless sensor network. To address the three management tasks, in this thesis we developed the Management Architecture for Wireless Sensor Networks (MARWIS). MARWIS is specifically designed for the management of heterogeneous wireless sensor networks. A distinguished feature of its design is the use of wireless mesh nodes as backbone, which enables diverse communication platforms and offloading functionality from the sensor nodes to the mesh nodes. This hierarchical architecture allows for efficient operation of the management tasks, due to the organisation of the sensor nodes into small sub-networks each managed by a mesh node. Furthermore, we developed a intuitive -based graphical user interface, which allows non-expert users to easily perform management tasks in the network. In contrast to other management frameworks, such as Mate, MANNA, TinyCubus, or code dissemination protocols, such as Impala, Trickle, and Deluge, MARWIS offers an integrated solution monitoring, configuration and code updating of sensor nodes. Integration of SNOMC into MARWIS further increases performance efficiency of the management tasks. To our knowledge, our approach is the first one, which offers a combination of a management architecture with an efficient overlay multicast transport protocol. This combination of SNOMC and MARWIS supports reliably, time- and energy-efficient operation of a heterogeneous wireless sensor network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Neural invasion (NI) is a histopathologic feature of colon cancer that receives little consideration. Therefore, we conducted a morphologic and functional characterization of NI in colon cancer. EXPERIMENTAL DESIGN NI was investigated in 673 patients with colon cancer. Localization and severity of NI was determined and related to patient's prognosis and survival. The neuro-affinity of colon cancer cells (HT29, HCT-116, SW620, and DLD-1) was compared with pancreatic cancer (T3M4 and SU86.86) and rectal cancer cells (CMT-93) in the in vitro three-dimensional (3D)-neural-migration assay and analyzed via live-cell imaging. Immunoreactivity of the neuroplasticity marker GAP-43, and the neurotrophic-chemoattractant factors Artemin and nerve growth factor (NGF), was quantified in colon cancer and pancreatic cancer nerves. Dorsal root ganglia of newborn rats were exposed to supernatants of colon cancer, rectal cancer, and pancreatic cancer cells and neurite density was determined. RESULTS NI was detected in 210 of 673 patients (31.2%). Although increasing NI severity scores were associated with a significantly poorer survival, presence of NI was not an independent prognostic factor in colon cancer. In the 3D migration assay, colon cancer and rectal cancer cells showed much less neurite-targeted migration when compared with pancreatic cancer cells. Supernatants of pancreatic cancer and rectal cancer cells induced a much higher neurite density than those of colon cancer cells. Accordingly, NGF, Artemin, and GAP-43 were much more pronounced in nerves in pancreatic cancer than in colon cancer. CONCLUSION NI is not an independent prognostic factor in colon cancer. The lack of a considerable biologic affinity between colon cancer cells and neurons, the low expression profile of colonic nerves for chemoattractant molecules, and the absence of a major neuroplasticity in colon cancer may explain the low prevalence and impact of NI in colon cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoporosis-related vertebral fractures represent a major health problem in elderly populations. Such fractures can often only be diagnosed after a substantial deformation history of the vertebral body. Therefore, it remains a challenge for clinicians to distinguish between stable and progressive potentially harmful fractures. Accordingly, novel criteria for selection of the appropriate conservative or surgical treatment are urgently needed. Computer tomography-based finite element analysis is an increasingly accepted method to predict the quasi-static vertebral strength and to follow up this small strain property longitudinally in time. A recent development in constitutive modeling allows us to simulate strain localization and densification in trabecular bone under large compressive strains without mesh dependence. The aim of this work was to validate this recently developed constitutive model of trabecular bone for the prediction of strain localization and densification in the human vertebral body subjected to large compressive deformation. A custom-made stepwise loading device mounted in a high resolution peripheral computer tomography system was used to describe the progressive collapse of 13 human vertebrae under axial compression. Continuum finite element analyses of the 13 compression tests were realized and the zones of high volumetric strain were compared with the experiments. A fair qualitative correspondence of the strain localization zone between the experiment and finite element analysis was achieved in 9 out of 13 tests and significant correlations of the volumetric strains were obtained throughout the range of applied axial compression. Interestingly, the stepwise propagating localization zones in trabecular bone converged to the buckling locations in the cortical shell. While the adopted continuum finite element approach still suffers from several limitations, these encouraging preliminary results towardsthe prediction of extended vertebral collapse may help in assessing fracture stability in future work.