54 resultados para hue discrimination
Resumo:
Visually impaired people show superior abilities in various perception tasks such as auditory attention, auditory temporal resolution, auditory spatial tuning, and odor discrimination. However, with the use of psychophysical methods, auditory and olfactory detection thresholds typically do not differ between visually impaired and sighted participants. Using a motion platform we investigated thresholds of passive whole-body motion discrimination in nine visually impaired participants and nine age-matched sighted controls. Participants were rotated in yaw, tilted in roll, and translated along the y-axis at two different frequencies (0.3 Hz and 2 Hz). An adaptive 3-down 1-up staircase procedure was used along with a two-alternative direction (leftward vs. rightward) discrimination task. Superior performance of visually impaired participants was found in the 0.3 Hz roll tilt condition. No differences between the visually impaired and controls were observed in all other types of motion. The superior performance in the 0.3 Hz roll tilt condition could reflect differences in the integration of extra-vestibular cues and increased sensitivity towards changes in the direction of the gravito-inertial force. In the absence of visual information, roll tilts entail a more pronounced risk of falling, and this could eventually account for the group difference. It is argued that differences in experimental procedures (i.e. detection vs. discrimination of stimuli) explain the discrepant findings across perceptual tasks comparing blind and sighted participants.
Resumo:
Recent studies have shown that women are more sensitive than men to subtle cuteness differences in infant faces. It has been suggested that raised levels in estradiol and progesterone may be responsible for this advantage. We compared young women's sensitivity to computer-manipulated baby faces varying in cuteness. Thirty-six women were tested once during ovulation and once during the luteal phase of their menstrual cycle. In a two alternative forced-choice experiment, participants chose the baby which they thought was cuter (Task 1), younger (Task 2), or the baby that they would prefer to babysit (Task 3). Saliva samples to assess levels of estradiol, progesterone and testosterone were collected at each test session. During ovulation, women were more likely to choose the cuter baby than during the luteal phase, in all three tasks. These results suggest that cuteness discrimination may be driven by cyclic hormonal shifts. However none of the measured hormones were related to increased cuteness sensitivity. We speculate that other hormones than the ones measured here might be responsible for the increased sensitivity to subtle cuteness differences during ovulation.
Resumo:
The present study was designed to investigate the influences of type of psychophysical task (two-alternative forced-choice [2AFC] and reminder tasks), type of interval (filled vs. empty), sensory modality (auditory vs. visual), and base duration (ranging from 100 through 1,000 ms) on performance on duration discrimination. All of these factors were systematically varied in an experiment comprising 192 participants. This approach allowed for obtaining information not only on the general (main) effect of each factor alone, but also on the functional interplay and mutual interactions of some or all of these factors combined. Temporal sensitivity was markedly higher for auditory than for visual intervals, as well as for the reminder relative to the 2AFC task. With regard to base duration, discrimination performance deteriorated with decreasing base durations for intervals below 400 ms, whereas longer intervals were not affected. No indication emerged that overall performance on duration discrimination was influenced by the type of interval, and only two significant interactions were apparent: Base Duration × Type of Interval and Base Duration × Sensory Modality. With filled intervals, the deteriorating effect of base duration was limited to very brief base durations, not exceeding 100 ms, whereas with empty intervals, temporal discriminability was also affected for the 200-ms base duration. Similarly, the performance decrement observed with visual relative to auditory intervals increased with decreasing base durations. These findings suggest that type of task, sensory modality, and base duration represent largely independent sources of variance for performance on duration discrimination that can be accounted for by distinct nontemporal mechanisms.
Resumo:
A likelihood-based discriminant for the identification of quark- and gluon-initiated jets is built and validated using 4.7 fb−1 √ of proton–proton collision data at √s = 7 TeV collected with the ATLAS detector at the LHC. Data sampleswith enriched quark or gluon content are used in the construction and validation of templates of jet properties that are the input to the likelihood-based discriminant. The discriminating power of the jet tagger is established in both data and Monte Carlo samples within a systematic uncertainty of ≈ 10–20 %. In data, light-quark jets can be tagged with an efficiency of ≈ 50% while achieving a gluon-jet mis-tag rate of ≈ 25% in a pT range between 40 GeV and 360 GeV for jets in the acceptance of the tracker. The rejection of gluon-jets found in the data is significantly below what is attainable using a Pythia 6Monte Carlo simulation, where gluon-jet mis-tag rates of 10% can be reached for a 50% selection efficiency of light-quark jets using the same jet properties.
Resumo:
Despite the close interrelation between vestibular and visual processing (e.g., vestibulo-ocular reflex), surprisingly little is known about vestibular function in visually impaired people. In this study, we investigated thresholds of passive whole-body motion discrimination (leftward vs. rightward) in nine visually impaired participants and nine age-matched sighted controls. Participants were rotated in yaw, tilted in roll, and translated along the interaural axis at two different frequencies (0.33 and 2 Hz) by means of a motion platform. Superior performance of visually impaired participants was found in the 0.33 Hz roll tilt condition. No differences were observed in the other motion conditions. Roll tilts stimulate the semicircular canals and otoliths simultaneously. The results could thus reflect a specific improvement in canal–otolith integration in the visually impaired and are consistent with the compensatory hypothesis, which implies that the visually impaired are able to compensate the absence of visual input.
Resumo:
Gender-fair language (GFL) aims at reducing gender stereotyping and discrimination. Two principle strategies have been employed to make languages gender-fair and to treat women and men symmetrically: neutralization and feminization. Neutralization is achieved, for example, by replacing male-masculine forms (policeman) with gender-unmarked forms (police officer), whereas feminization relies on the use of feminine forms to make female referents visible (i.e., the applicant… he or she instead of the applicant… he). By integrating research on (1) language structures, (2) language policies, and (3) individual language behavior, we provide a critical review of how GFL contributes to the reduction of gender stereotyping and discrimination. Our review provides a basis for future research and for scientifically based policy-making.
Resumo:
A common finding in time psychophysics is that temporal acuity is much better for auditory than for visual stimuli. The present study aimed to examine modality-specific differences in duration discrimination within the conceptual framework of the Distinct Timing Hypothesis. This theoretical account proposes that durations in the lower milliseconds range are processed automatically while longer durations are processed by a cognitive mechanism. A sample of 46 participants performed two auditory and visual duration discrimination tasks with extremely brief (50-ms standard duration) and longer (1000-ms standard duration) intervals. Better discrimination performance for auditory compared to visual intervals could be established for extremely brief and longer intervals. However, when performance on duration discrimination of longer intervals in the 1-s range was controlled for modality-specific input from the sensory-automatic timing mechanism, the visual-auditory difference disappeared completely as indicated by virtually identical Weber fractions for both sensory modalities. These findings support the idea of a sensory-automatic mechanism underlying the observed visual-auditory differences in duration discrimination of extremely brief intervals in the millisecond range and longer intervals in the 1-s range. Our data are consistent with the notion of a gradual transition from a purely modality-specific, sensory-automatic to a more cognitive, amodal timing mechanism. Within this transition zone, both mechanisms appear to operate simultaneously but the influence of the sensory-automatic timing mechanism is expected to continuously decrease with increasing interval duration.
Resumo:
Studies have shown that the discriminability of successive time intervals depends on the presentation order of the standard (St) and the comparison (Co) stimuli. Also, this order affects the point of subjective equality. The first effect is here called the standard-position effect (SPE); the latter is known as the time-order error. In the present study, we investigated how these two effects vary across interval types and standard durations, using Hellström’s sensation-weighting model to describe the results and relate them to stimulus comparison mechanisms. In Experiment 1, four modes of interval presentation were used, factorially combining interval type (filled, empty) and sensory modality (auditory, visual). For each mode, two presentation orders (St–Co, Co–St) and two standard durations (100 ms, 1,000 ms) were used; half of the participants received correctness feedback, and half of them did not. The interstimulus interval was 900 ms. The SPEs were negative (i.e., a smaller difference limen for St–Co than for Co–St), except for the filled-auditory and empty-visual 100-ms standards, for which a positive effect was obtained. In Experiment 2, duration discrimination was investigated for filled auditory intervals with four standards between 100 and 1,000 ms, an interstimulus interval of 900 ms, and no feedback. Standard duration interacted with presentation order, here yielding SPEs that were negative for standards of 100 and 1,000 ms, but positive for 215 and 464 ms. Our findings indicate that the SPE can be positive as well as negative, depending on the interval type and standard duration, reflecting the relative weighting of the stimulus information, as is described by the sensation-weighting model.