48 resultados para homologous zones
Resumo:
Many countries treat income generated via exports favourably, especially when production takes places in special zones known as export processing zones (EPZs). EPZs can be defined as specific, geographically defined zones or areas that are subject to special administration and that generally offer tax incentives, such as duty‐free imports when producing for export, exemption from other regulatory constraints linked to import for the domestic market, sometimes favourable treatment in terms of industrial regulation, and the streamlining of border clearing procedures. We describe a database of WTO Members that employ special economic zones as part of their industrial policy mix. This is based on WTO notification and monitoring through the WTO’s trade policy review mechanism (TPRM), supplemented with information from the ILO, World Bank, and primary sources. We also provide some rough analysis of the relationship between use of EPZs and the carbon intensity of exports, and relative levels of investment across countries with and without special zones.
Resumo:
Analogue model experiments using both brittle and viscous materials were performed to investigate the development and interaction of strike-slip faults in zones of distributed shear deformation. At low strain, bulk dextral shear deformation of an initial rectangular model is dominantly accommodated by left-stepping, en echelon strike-slip faults (Riedel shears, R) that form in response to the regional (bulk) stress field. Push-up zones form in the area of interaction between adjacent left-stepping Riedel shears. In cross sections, faults bounding push-up zones have an arcuate shape or merge at depth. Adjacent left-stepping R shears merge by sideways propagation or link by short synthetic shears that strike subparallel to the bulk shear direction. Coalescence of en echelon R shears results in major, through-going faults zones (master faults). Several parallel master faults develop due to the distributed nature of deformation. Spacing between master faults is related to the thickness of the brittle layers overlying the basal viscous layer. Master faults control to a large extent the subsequent fault pattern. With increasing strain, relatively short antithetic and synthetic faults develop mostly between old, but still active master faults. The orientation and evolution of the new faults indicate local modifications of the stress field. In experiments lacking lateral borders, closely spaced parallel antithetic faults (cross faults) define blocks that undergo clockwise rotation about a vertical axis with continuing deformation. Fault development and fault interaction at different stages of shear strain in our models show similarities with natural examples that have undergone distributed shear.