50 resultados para hierarchical linear model
Resumo:
Computer vision-based food recognition could be used to estimate a meal's carbohydrate content for diabetic patients. This study proposes a methodology for automatic food recognition, based on the Bag of Features (BoF) model. An extensive technical investigation was conducted for the identification and optimization of the best performing components involved in the BoF architecture, as well as the estimation of the corresponding parameters. For the design and evaluation of the prototype system, a visual dataset with nearly 5,000 food images was created and organized into 11 classes. The optimized system computes dense local features, using the scale-invariant feature transform on the HSV color space, builds a visual dictionary of 10,000 visual words by using the hierarchical k-means clustering and finally classifies the food images with a linear support vector machine classifier. The system achieved classification accuracy of the order of 78%, thus proving the feasibility of the proposed approach in a very challenging image dataset.
Resumo:
BACKGROUND The aim of this study was to evaluate the accuracy of linear measurements on three imaging modalities: lateral cephalograms from a cephalometric machine with a 3 m source-to-mid-sagittal-plane distance (SMD), from a machine with 1.5 m SMD and 3D models from cone-beam computed tomography (CBCT) data. METHODS Twenty-one dry human skulls were used. Lateral cephalograms were taken, using two cephalometric devices: one with a 3 m SMD and one with a 1.5 m SMD. CBCT scans were taken by 3D Accuitomo® 170, and 3D surface models were created in Maxilim® software. Thirteen linear measurements were completed twice by two observers with a 4 week interval. Direct physical measurements by a digital calliper were defined as the gold standard. Statistical analysis was performed. RESULTS Nasion-Point A was significantly different from the gold standard in all methods. More statistically significant differences were found on the measurements of the 3 m SMD cephalograms in comparison to the other methods. Intra- and inter-observer agreement based on 3D measurements was slightly better than others. LIMITATIONS Dry human skulls without soft tissues were used. Therefore, the results have to be interpreted with caution, as they do not fully represent clinical conditions. CONCLUSIONS 3D measurements resulted in a better observer agreement. The accuracy of the measurements based on CBCT and 1.5 m SMD cephalogram was better than a 3 m SMD cephalogram. These findings demonstrated the linear measurements accuracy and reliability of 3D measurements based on CBCT data when compared to 2D techniques. Future studies should focus on the implementation of 3D cephalometry in clinical practice.
Resumo:
Pspline uses xtmixed to fit a penalized spline regression and plots the smoothed function. Additional covariates can be specified to adjust the smooth and plot partial residuals.
Resumo:
rrreg fits a linear probability model for randomized response data