95 resultados para glândula adrenal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arterial hypertension in childhood is less frequent as compared to adulthood but is more likely to be secondary to an underlying disorder. After ruling out more obvious causes, some patients still present with strongly suspected secondary hypertension of yet unknown etiology. A number of these children have hypertension due to single gene mutations inherited in an autosomal dominant or recessive fashion. The finding of abnormal potassium levels (low or high) in the presence of suppressed renin secretion, and metabolic alkalosis or acidosis should prompt consideration of these familial diseases. However, mild hypertension and the absence of electrolyte abnormalities do not exclude hereditary conditions. In monogenic hypertensive disorders, three distinct mechanisms leading to the common final pathway of increased sodium reabsorption, volume expansion, and low plasma renin activity are documented. The first mechanism relates to gain-of-function mutations with a subsequent hyperactivity of renal sodium and chloride reabsorption leading to plasma volume expansion (e.g., Liddle's syndrome, Gordon's syndrome). The second mechanism involves deficiencies of enzymes that regulate adrenal steroid hormone synthesis and deactivation (e.g., subtypes of congenital adrenal hyperplasia, apparent mineralocorticoid excess (AME)). The third mechanism is characterized by excessive aldosterone synthesis that escapes normal regulatory mechanisms and leading to volume-dependent hypertension in the presence of suppressed renin release (glucocorticoid remediable aldosteronism). Hormonal studies coupled with genetic testing can help in the early diagnosis of these disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucocorticoids (GC) are potent anti-inflammatory and immunosuppressive steroid hormones, mainly produced by the adrenal glands. However, increasing evidence supports the idea of additional extra-adrenal sources of bioactive GC. The lung epithelium is constantly exposed to a plethora of antigenic stimuli, and local GC synthesis could contribute to limit uncontrolled immune reactions and tissue damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current treatment guidelines generally suggest using lower and weight-adjusted glucocorticoid replacement doses in patients with insufficiency of the hypothalamic-pituitary-adrenal (HPA) axis. Although data in patients with acromegaly revealed a positive association between glucocorticoid dose and mortality, no comparable results exist in patients with nonfunctioning pituitary adenomas (NFPA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The secretin receptor (SR), a G protein-coupled receptor, mediates the effects of the gastrointestinal hormone secretin on digestion and water homeostasis. Recently, high SR expression has been observed in pancreatic ductal adenocarcinomas, cholangiocellular carcinomas, gastrinomas, and bronchopulmonary carcinoid tumors. Receptor overexpression associates with enhanced secretin-mediated signaling, but whether this molecule plays an independent role in tumorigenesis is currently unknown. We recently discovered that pheochromocytomas developing in rats affected by the MENX (multiple endocrine neoplasia-like) syndrome express at very high-level Sctr, encoding SR. We here report that SR are also highly abundant on the membranes of rat adrenal and extraadrenal pheochromocytoma, starting from early stages of tumor development, and are functional. PC12 cells, the best characterized in vitro pheochromocytoma model, also express Sctr at high level. Thus, we used them as model to study the role of SR in neoplastic transformation. Small interfering RNA-mediated knockdown of Sctr decreases PC12 cells proliferation and increases p27 levels. The proproliferative effect of SR in PC12 cells is mediated, in part, by the phosphatidylinositol 3 kinase (PI3K)/serine-threonine protein kinase (AKT) pathway. Transfection of Sctr in Y1 adrenocortical carcinoma cells, expressing low endogenous levels of Sctr, stimulates cell proliferation also, in part, via the PI3K/AKT signaling cascade. Because of the link between SR and PI3K/AKT signaling, tumor cells expressing high levels of the receptor (MENX-associated primary pheochromocytoma and NCI-H727 human bronchopulmonary carcinoid cells) respond well and in a SR-dependent manner to PI3K inhibitors, such as NVP-BEZ235. The association between SR levels and response to PI3K inhibition might open new avenues for the treatment of tumors overexpressing this receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Echinococcus multilocularis metacestodes, the surface-associated and highly glycosylated laminated layer, and molecules associated with this structure, is believed to be involved in modulating the host-parasite interface. We report on the molecular and functional characterisation of E. multilocularis phosphoglucose isomerase (EmPGI), which is a component of this laminated layer. The EmPGI amino acid sequence is virtually identical to that of its homologue in Echinococcus granulosus, and shares 64% identity and 86% similarity with human PGI. Mammalian PGI is a multi-functional protein which, besides its glycolytic function, can also act as a cytokine, growth factor and inducer of angiogenesis, and plays a role in tumour growth, development and metastasis formation. Recombinant EmPGI (recEmPGI) is also functionally active as a glycolytic enzyme and was found to be present, besides the laminated layer, in vesicle fluid and in germinal layer cell extracts. EmPGI is released from metacestodes and induces a humoral immune response in experimentally infected mice, and vaccination of mice with recEmPGI renders these mice more resistant towards secondary challenge infection, indicating that EmPGI plays an important role in parasite development and/or in modulating the host-parasite relationship. We show that recEmPGI stimulates the growth of isolated E. multilocularis germinal layer cells in vitro and selectively stimulates the proliferation of bovine adrenal cortex endothelial cells but not of human fibroblasts and rat hepatocytes. Thus, besides its role in glycolysis, EmPGI could also act as a factor that stimulates parasite growth and potentially induces the formation of novel blood vessels around the developing metacestode in vivo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Steroidogenic factor-1 (SF-1/NR5A1) is a nuclear receptor that regulates adrenal and reproductive development and function. NR5A1 mutations have been detected in 46,XY individuals with disorders of sexual development (DSD) but apparently normal adrenal function and in 46,XX women with normal sexual development yet primary ovarian insufficiency (POI).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aldosterone levels are markedly elevated during normal pregnancy but fall even though volume contracts when preeclampsia occurs. The level of aldosterone in either condition cannot be explained solely by the activity of the renin-angiotensin II system. In normal gestation, vascular endothelial growth factor (VEGF) is thought to maintain vascular health, but its role in adrenal hormone production is unknown. We hypothesized that the role of VEGF in the adrenal gland is to maintain vascular health and regulate aldosterone production. Here, we demonstrate that supernatant of endothelial cells grown in the presence of VEGF enhanced aldosterone synthase activity in human adrenocortical cells. VEGF either alone or combined with angiotensin II increased aldosterone production in adrenal cells. These data suggest that endothelial cell-dependent and independent activation of aldosterone is regulated by VEGF. In contrast to angiotensin II, VEGF did not upregulate the steroidogenic acute regulatory protein. Consistent with this observation, angiotensin II stimulated both aldosterone and cortisol synthesis from progesterone, whereas VEGF stimulated selectively aldosterone production. In rats, overexpression of soluble fms-like tyrosine kinase-1, an endogenous VEGF inhibitor, led to adrenocortical capillary rarefaction and fall in aldosterone concentrations that correlated inversely with soluble fms-like tyrosine kinase-1 levels. These findings may explain why aldosterone increases so markedly during normal gestation and why preeclampsia, a condition characterized by high soluble fms-like tyrosine kinase-1, is associated with inappropriately low aldosterone levels in spite of relatively lower plasma volumes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: A severely virilized 46, XX newborn girl was referred to our center for evaluation and treatment of congenital adrenal hyperplasia (CAH) because of highly elevated 17alpha-hydroxyprogesterone levels at newborn screening; biochemical tests confirmed the diagnosis of salt-wasting CAH. Genetic analysis revealed that the girl was compound heterozygote for a previously reported Q318X mutation in exon 8 and a novel insertion of an adenine between nucleotides 962 and 963 in exon 4 of the CYP21A2 gene. This 962_963insA mutation created a frameshift leading to a stop codon at amino acid 161 of the P450c21 protein. AIM AND METHODS: To better understand structure-function relationships of mutant P450c21 proteins, we performed multiple sequence alignments of P450c21 with three mammalian P450s (P450 2C8, 2C9 and 2B4) with known structures as well as with human P450c17. Comparative molecular modeling of human P450c21 was then performed by MODELLER using the X-ray crystal structure of rabbit P450 2B4 as a template. RESULTS: The new three dimensional model of human P450c21 and the sequence alignment were found to be helpful in predicting the role of various amino acids in P450c21, especially those involved in heme binding and interaction with P450 oxidoreductase, the obligate electron donor. CONCLUSION: Our model will help in analyzing the genotype-phenotype relationship of P450c21 mutations which have not been tested for their functional activity in an in vitro assay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute mental stress induces a significant increase in plasma interleukin (IL)-6 levels as a possible mechanism for how psychological stress might contribute to atherosclerosis. We investigated whether the IL-6 response would habituate in response to a repetitively applied mental stressor and whether cortisol reactivity would show a relationship with IL-6 reactivity. Study participants were 21 reasonably healthy men (mean age 46+/-7 years) who underwent the Trier Social Stress Test (combination of a 3-min preparation, 5-min speech, and 5-min mental arithmetic) three times with an interval of 1 week. Plasma IL-6 and free salivary cortisol were measured immediately before and after stress, and at 45 and 105 min of recovery from stress. Cortisol samples were also obtained 15 and 30 min after stress. Compared to non-stressed controls, IL-6 significantly increased between rest and 45 min post-stress (p=.022) and between rest and 105 min post-stress (p=.001). Peak cortisol (p=.034) and systolic blood pressure (p=.009) responses to stress both habituated between weeks one and three. No adaptation occurred in diastolic blood pressure, heart rate, and IL-6 responses to stress. The areas under the curve integrating the stress-induced changes in cortisol and IL-6 reactivity were negatively correlated at visit three (r=-.54, p=.011), but not at visit one. The IL-6 response to acute mental stress occurs delayed and shows no adaptation to repeated moderate mental stress. The hypothalamus-pituitary-adrenal axis may attenuate stress reactivity of IL-6. The lack of habituation in IL-6 responses to daily stress could subject at-risk individuals to higher atherosclerotic morbidity and mortality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Urinary hormone analysis is applied to detect an altered steroid hormone metabolism, an elevated production of biogenic amines and to non-invasively determine the protein hormone human beta-choriogonadotropin indicating a pregnancy. Occasionally, these determinations need to be complemented by plasma- or serum hormone analysis. Clinical data including current drug therapy and urinary creatinine as reference are required to interpret any urine analysis. Diseases to be investigated by steroid hormone analysis are excess production of a typical or atypical mineralocorticoid active steroid hormones, the hormonal activity of adrenal or ovarian tumors, acne of unknown origin, hirsutism, a PCO-, an adrenogenital or a suspected Cushing syndrome. Biogenic amines should be determined in suspected secondary or refractory arterial hypertension, in case of pheochromocytoma- or paraganglioma-associated symptoms or if a serotonin-producing tumor is suspected. In children genetically determined diseases are the primary background to perform an analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucocorticoids are steroid hormones with important functions in development, immune regulation, and glucose metabolism. The adrenal glands are the predominant source of glucocorticoids; however, there is increasing evidence for extraadrenal glucocorticoid synthesis in thymus, brain, skin, and vascular endothelium. We recently identified intestinal epithelial cells as an important source of glucocorticoids, which regulate the activation of local intestinal immune cells. The molecular regulation of intestinal glucocorticoid synthesis is currently unexplored. In this study we investigated the transcriptional regulation of the steroidogenic enzymes P450 side-chain cleavage enzyme and 11beta-hydroxylase, and the production of corticosterone in the murine intestinal epithelial cell line mICcl2 and compared it with that in the adrenocortical cell line Y1. Surprisingly, we observed a reciprocal stimulation pattern in these two cell lines. Elevation of intracellular cAMP induced the expression of steroidogenic enzymes in Y1 cells, whereas it inhibited steroidogenesis in mICcl2 cells. In contrast, phorbol ester induced steroidogenic enzymes in intestinal epithelial cells, which was synergistically enhanced upon transfection of cells with the nuclear receptors steroidogenic factor-1 (NR5A1) and liver receptor homolog-1 (NR5A2). Finally, we observed that basal and liver receptor homolog-1/phorbol ester-induced expression of steroidogenic enzymes in mICcl2 cells was inhibited by the antagonistic nuclear receptor small heterodimer partner. We conclude that the molecular basis of glucocorticoid synthesis in intestinal epithelial cells is distinct from that in adrenal cells, most likely representing an adaptation to the local environment and different requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thiazolidinediones (TZDs) such as pioglitazone and rosiglitazone are widely used as insulin sensitizers in the treatment of type 2 diabetes. In diabetic women with polycystic ovary syndrome, treatment with pioglitazone or rosiglitazone improves insulin resistance and hyperandrogenism, but the mechanism by which TZDs down-regulate androgen production is unknown. Androgens are synthesized in the human gonads as well as the adrenals. We studied the regulation of androgen production by analyzing the effect of pioglitazone and rosiglitazone on steroidogenesis in human adrenal NCI-H295R cells, an established in vitro model of steroidogenesis of the human adrenal cortex. Both TZDs changed the steroid profile of the NCI-H295R cells and inhibited the activities of P450c17 and 3betaHSDII, key enzymes of androgen biosynthesis. Pioglitazone but not rosiglitazone inhibited the expression of the CYP17 and HSD3B2 genes. Likewise, pioglitazone repressed basal and 8-bromo-cAMP-stimulated activities of CYP17 and HSD3B2 promoter reporters in NCI-H295R cells. However, pioglitazone did not change the activity of a cAMP-responsive luciferase reporter, indicating that it does not influence cAMP/protein kinase A/cAMP response element-binding protein pathway signaling. Although peroxisome proliferator-activated receptor gamma (PPARgamma) is the nuclear receptor for TZDs, suppression of PPARgamma by small interfering RNA technique did not alter the inhibitory effect of pioglitazone on CYP17 and HSD3B2 expression, suggesting that the action of pioglitazone is independent of PPARgamma. On the other hand, treatment of NCI-H295R cells with mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) enhanced promoter activity and expression of CYP17. This effect was reversed by pioglitazone treatment, indicating that the MEK/ERK signaling pathway plays a role in regulating androgen biosynthesis by pioglitazone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have identified a novel cytosine/thymidine polymorphism of the human steroidogenic acute regulatory (StAR) gene promoter located 3 bp downstream of the steroidogenic factor-1 (SF-1)-binding site and 9 bp upstream of the TATA box (ATTTAAG). Carriers of this mutation have a high prevalence of primary aldosteronism. In transfection experiments, basal StAR promoter activity was unaltered by the mutation in murine Y-1 cells and human H295R cells. In Y-1 cells, forskolin (25 microM, 6 h) significantly increased wild-type promoter activity to 230+/-33% (P<0.05, n=4). In contrast, forskolin increased mutated promoter activity only to 150+/-27%, with a significant 35% reduction compared to wild type (P<0.05, n=3). In H295R cells, angiotensin II (AngII; 10 nM) increased wild-type StAR promoter activity to 265+/-22% (P<0.01, n=3), while mutated StAR promoter activity in response to AngII only reached 180+/-29% of controls (P< 0.01, n=3). Gel mobility shift assays show the formation of two additional complexes with the mutated promoter: one with the transcription repressor DAX-1 and another with a yet unidentified factor, which strongly binds the SF-1 response element. Thus, this novel mutation in the human StAR promoter is critically involved in the regulation of StAR gene expression and is associated with reduced promoter activity, a finding relevant for adrenal steroid response to physiological stimulators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A five-year-old, entire, male dachshund was presented with a five day history of hypersalivation and regurgitation as well as polyuria and polydipsia for several months. Chest radiographs demonstrated megaoesophagus and aspiration pneumonia. Furthermore, hyperadrenocorticism was demonstrated by means of elevations in levels of serum alkaline phosphatase and cholesterol, decreased urinary specific gravity, increased response to adrenocorticotropic hormone stimulation, insufficient suppression of the post-dexamethasone plasma cortisol levels, an increased endogenous adrenocorticotropic hormone concentration and bilaterally enlarged adrenal glands on abdominal ultrasound. The dog became severely dyspnoeic and was euthanased after magnetic resonance imaging was performed. The magnetic resonance imaging and necropsy revealed the sellar region mainly filled with fluid, with only small tissue remnants, a condition defined as empty sella syndrome in human medicine. To the author's knowledge, this is the first dog described with empty sella syndrome and only the second dog described with hyperadrenocorticism secondary to ectopic adrenocorticotropic hormone production. However, the association between empty sella syndrome and hyperadrenocorticism may be no more than incidental.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many natural and synthetic compounds present in the environment exert a number of adverse effects on the exposed organisms, leading to endocrine disruption, for which they were termed endocrine disrupting chemicals (EDCs). A decrease in reproduction success is one of the most well-documented signs of endocrine disruption in fish. Estrogens are steroid hormones involved in the control of important reproduction-related processes, including sexual differentiation, maturation and a variety of others. Careful spatial and temporal balance of estrogens in the body is crucial for proper functioning. At the final step of estrogen biosynthesis, cytochrome P450 aromatase, encoded by the cyp19 gene, converts androgens into estrogens. Modulation of aromatase CYP19 expression and function can dramatically alter the rate of estrogen production, disturbing the local and systemic levels of estrogens. In the present review, the current progress in CYP19 characterization in teleost fish is summarized and the potential of several classes of EDCs to interfere with CYP19 expression and activity is discussed. Two cyp19 genes are present in most teleosts, cyp19a and cyp19b, primarily expressed in the ovary and brain, respectively. Both aromatase CYP19 isoforms are involved in the sexual differentiation and regulation of the reproductive cycle and male reproductive behavior in diverse teleost species. Alteration of aromatase CYP19 expression and/or activity, be it upregulation or downregulation, may lead to diverse disturbances of the above mentioned processes. Prediction of multiple transcriptional regulatory elements in the promoters of teleost cyp19 genes suggests the possibility for several EDC classes to affect cyp19 expression on the transcriptional level. These sites include cAMP responsive elements, a steroidogenic factor 1/adrenal 4 binding protein site, an estrogen-responsive element (ERE), half-EREs, dioxin-responsive elements, and elements related to diverse other nuclear receptors (peroxisome proliferator activated receptor, retinoid X receptor, retinoic acid receptor). Certain compounds including phytoestrogens, xenoestrogens, fungicides and organotins may modulate aromatase CYP19 activity on the post-transcriptional level. As is shown in this review, diverse EDCs may affect the expression and/or activity of aromatase cyp19 genes through a variety of mechanisms, many of which need further characterization in order to improve the prediction of risks posed by a contaminated environment to teleost fish population.