156 resultados para geostationary orbit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have determined in detail the electron spectrum in the decay of bound muons. These results are especially relevant for the upcoming μ − e conversion experiments.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical surveys for space debris in high-altitude orbits have been conducted since more than ten years. Originally these efforts concentrated mainly on the geostationary ring (GEO). Corresponding observation strategies, processing techniques and cataloguing approaches have been developed and successfully applied. The ESA GEO surveys, e.g., resulted in the detection of a significant population of small-size debris and later in the discovery of high area-to-mass ratio objects in GEO-like orbits. The observation scenarios were successively adapted to survey the geostationary transfer orbit (GTO) region; and recently surveys to search for debris in the medium Earth orbit (MEO) region of the global navigation satellite constellations were successfully conducted. Comparably less experience (both, in terms of practical observation and strategy definition) is available for eccentric orbits that (at least partly) are in the MEO region, in particular for the Molniya-type orbits. Several breakup events and deliberate fragmentations are known to have taken place in such orbits. Different survey and follow-up strategies for searching space debris objects in highly-eccentric MEO orbits, and to acquire orbits which are sufficiently accurate to catalogue such objects and to maintain their orbits over longer time spans were developed. Simulations were performed to compare the performance of different survey and cataloguing strategies. Eventually, optical observations were conducted in the framework of an ESA study using ESA’s Space Debris Telescope (ESASDT) the 1-m Zeiss telescope located at the Optical Ground Station (OGS) at the Teide Observatory at Tenerife, Spain. A first series of surveys of Molnjya-type orbits was performed between January and April 2013. During these four months survey observations were performed during nine nights. A basic survey consisted of observing a single geocentric field for 10 minutes. If a faint object was found, follow-up observations were performed during the same night to ensure a save rediscovery of the object during the next nights. Additional follow-up observations to maintain the orbits of these newly discovered faint objects were also acquired with AIUB ́s 1m ZIMLAT telescope in Zimmerwald, Switzerland. Eventually 195 basic surveys were performed during these nine nights corresponding to about 32.5 hours of observations. In total 24 uncorrelated faint objects were discovered and all known catalogue objects in the survey fields were detected. On average one uncorrelated object was found every 80 minutes. Some of these objects show a considerable brightness variation and have a high area-to-mass ratio as determined in the orbit estimation process.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ever increasing number of low Earth orbiting (LEO) satellites is, or will be, equipped with retro-reflectors for Satellite Laser Ranging (SLR) and on-board receivers to collect observations from Global Navigation Satellite Systems (GNSS) such as the Global Positioning Sys- tem (GPS) and the Russian GLONASS and the European Galileo systems in the future. At the Astronomical Insti- tute of the University of Bern (AIUB) LEO precise or- bit determination (POD) using either GPS or SLR data is performed for a wide range of applications for satellites at different altitudes. For this purpose the classical numeri- cal integration techniques, as also used for dynamic orbit determination of satellites at high altitudes, are extended by pseudo-stochastic orbit modeling techniques to effi- ciently cope with potential force model deficiencies for satellites at low altitudes. Accuracies of better than 2 cm may be achieved by pseudo-stochastic orbit modeling for satellites at very low altitudes such as for the GPS-based POD of the Gravity field and steady-state Ocean Circula- tion Explorer (GOCE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The COSMIC-2 mission is a follow-on mission of the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) with an upgraded payload for improved radio occultation (RO) applications. The objective of this paper is to develop a near-real-time (NRT) orbit determination system, called NRT National Chiao Tung University (NCTU) system, to support COSMIC-2 in atmospheric applications and verify the orbit product of COSMIC. The system is capable of automatic determinations of the NRT GPS clocks and LEO orbit and clock. To assess the NRT (NCTU) system, we use eight days of COSMIC data (March 24-31, 2011), which contain a total of 331 GPS observation sessions and 12 393 RO observable files. The parallel scheduling for independent GPS and LEO estimations and automatic time matching improves the computational efficiency by 64% compared to the sequential scheduling. Orbit difference analyses suggest a 10-cm accuracy for the COSMIC orbits from the NRT (NCTU) system, and it is consistent as the NRT University Corporation for Atmospheric Research (URCA) system. The mean velocity accuracy from the NRT orbits of COSMIC is 0.168 mm/s, corresponding to an error of about 0.051 μrad in the bending angle. The rms differences in the NRT COSMIC clock and in GPS clocks between the NRT (NCTU) and the postprocessing products are 3.742 and 1.427 ns. The GPS clocks determined from a partial ground GPS network [from NRT (NCTU)] and a full one [from NRT (UCAR)] result in mean rms frequency stabilities of 6.1E-12 and 2.7E-12, respectively, corresponding to range fluctuations of 5.5 and 2.4 cm and bending angle errors of 3.75 and 1.66 μrad .