50 resultados para fungal physiology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to test the effects of a sustained nystagmus on the head impulse response of the vestibulo-ocular reflex (VOR) in healthy subjects. VOR gain (slow-phase eye velocity/head velocity) was measured using video head impulse test goggles. Acting as a surrogate for a spontaneous nystagmus (SN), a post-rotatory nystagmus (PRN) was elicited after a sustained, constant-velocity rotation, and then head impulses were applied. 'Raw' VOR gain, uncorrected for PRN, in healthy subjects in response to head impulses with peak velocities in the range of 150°/s-250°/s was significantly increased (as reflected in an increase in the slope of the gain versus head velocity relationship) after inducing PRN with slow phases of nystagmus of high intensity (>30°/s) in the same but not in the opposite direction as the slow-phase response induced by the head impulses. The values of VOR gain themselves, however, remained in the normal range with slow-phase velocities of PRN < 30°/s. Finally, quick phases of PRN were suppressed during the first 20-160 ms of a head impulse; the time frame of suppression depended on the direction of PRN but not on the duration of the head impulse. Our results in normal subjects suggest that VOR gains measured using head impulses may have to be corrected for any superimposed SN when the slow-phase velocity of nystagmus is relatively high and the peak velocity of the head movements is relatively low. The suppression of quick phases during head impulses may help to improve steady fixation during rapid head movements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress-induced activation of the sympathoadrenal medullary system activates both the coagulation and fibrinolysis system resulting in net hypercoagulability. The evolutionary interpretation of this physiology is that stress-hypercoagulability protects a healthy organism from excess bleeding should injury occur in fight-or-flight situations. In turn, acute mental stress, negative emotions and psychological trauma also are triggering factors of atherothrombotic events and possibly of venous thromboembolism. Individuals with pre-existent atherosclerosis and impaired endothelial anticoagulant function are the most vulnerable to experience onset of acute coronary events within two hours of intense emotions. A range of sociodemographic and psychosocial factors (e.g., chronic stress and negative affect) might critically intensify and prolong stress-induced hypercoagulability. In contrast, several pharmacological compounds, dietary flavanoids, and positive affect mitigate the acute prothrombotic stress response. Studies are needed to investigate whether attenuation of stress-hypercoagulability through medications and biobehavioral interventions reduce the risk of thrombotic incidents in at-risk populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By attacking plants, herbivorous mammals, insects, and belowground pathogens are known to play an important role in maintaining biodiversity in grasslands. Foliar fungal pathogens are ubiquitous in grassland ecosystems, but little is known about their role as drivers of community composition and diversity. Here we excluded foliar fungal pathogens from perennial grassland by using fungicide to determine the effect of natural levels of disease on an otherwise undisturbed plant community. Importantly, we excluded foliar fungal pathogens along with rabbits, insects, and mollusks in a full factorial design, which allowed a comparison of pathogen effects along with those of better studied plant enemies. This revealed that fungal pathogens substantially reduced aboveground plant biomass and promoted plant diversity and that this especially benefited legumes. The scale of pathogen effects on productivity and biodiversity was similar to that of rabbits and insects, but different plant species responded to the exclusion of the three plant enemies. These results suggest that theories of plant coexistence and management of biodiversity in grasslands should consider foliar fungal pathogens as potentially important drivers of community composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plant–microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress.