56 resultados para finite element modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical appearance models have recently been introduced in bone mechanics to investigate bone geometry and mechanical properties in population studies. The establishment of accurate anatomical correspondences is a critical aspect for the construction of reliable models. Depending on the representation of a bone as an image or a mesh, correspondences are detected using image registration or mesh morphing. The objective of this study was to compare image-based and mesh-based statistical appearance models of the femur for finite element (FE) simulations. To this aim, (i) we compared correspondence detection methods on bone surface and in bone volume; (ii) we created an image-based and a mesh-based statistical appearance models from 130 images, which we validated using compactness, representation and generalization, and we analyzed the FE results on 50 recreated bones vs. original bones; (iii) we created 1000 new instances, and we compared the quality of the FE meshes. Results showed that the image-based approach was more accurate in volume correspondence detection and quality of FE meshes, whereas the mesh-based approach was more accurate for surface correspondence detection and model compactness. Based on our results, we recommend the use of image-based statistical appearance models for FE simulations of the femur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES To compare biomechanical rupture risk parameters of asymptomatic, symptomatic and ruptured abdominal aortic aneurysms (AAA) using finite element analysis (FEA). STUDY DESIGN Retrospective biomechanical single center analysis of asymptomatic, symptomatic, and ruptured AAAs. Comparison of biomechanical parameters from FEA. MATERIALS AND METHODS From 2011 to 2013 computed tomography angiography (CTA) data from 30 asymptomatic, 15 symptomatic, and 15 ruptured AAAs were collected consecutively. FEA was performed according to the successive steps of AAA vessel reconstruction, segmentation and finite element computation. Biomechanical parameters Peak Wall Rupture Risk Index (PWRI), Peak Wall Stress (PWS), and Rupture Risk Equivalent Diameter (RRED) were compared among the three subgroups. RESULTS PWRI differentiated between asymptomatic and symptomatic AAAs (p < .0004) better than PWS (p < .1453). PWRI-dependent RRED was higher in the symptomatic subgroup compared with the asymptomatic subgroup (p < .0004). Maximum AAA external diameters were comparable between the two groups (p < .1355). Ruptured AAAs showed the highest values for external diameter, total intraluminal thrombus volume, PWS, RRED, and PWRI compared with asymptomatic and symptomatic AAAs. In contrast with symptomatic and ruptured AAAs, none of the asymptomatic patients had a PWRI value >1.0. This threshold value might identify patients at imminent risk of rupture. CONCLUSIONS From different FEA derived parameters, PWRI distinguishes most precisely between asymptomatic and symptomatic AAAs. If elevated, this value may represent a negative prognostic factor for asymptomatic AAAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vertebral compression fracture is a common medical problem in osteoporotic individuals. The quantitative computed tomography (QCT)-based finite element (FE) method may be used to predict vertebral strength in vivo, but needs to be validated with experimental tests. The aim of this study was to validate a nonlinear anatomy specific QCT-based FE model by using a novel testing setup. Thirty-seven human thoracolumbar vertebral bone slices were prepared by removing cortical endplates and posterior elements. The slices were scanned with QCT and the volumetric bone mineral density (vBMD) was computed with the standard clinical approach. A novel experimental setup was designed to induce a realistic failure in the vertebral slices in vitro. Rotation of the loading plate was allowed by means of a ball joint. To minimize device compliance, the specimen deformation was measured directly on the loading plate with three sensors. A nonlinear FE model was generated from the calibrated QCT images and computed vertebral stiffness and strength were compared to those measured during the experiments. In agreement with clinical observations, most of the vertebrae underwent an anterior wedge-shape fracture. As expected, the FE method predicted both stiffness and strength better than vBMD (R2 improved from 0.27 to 0.49 and from 0.34 to 0.79, respectively). Despite the lack of fitting parameters, the linear regression of the FE prediction for strength was close to the 1:1 relation (slope and intercept close to one (0.86 kN) and to zero (0.72 kN), respectively). In conclusion, a nonlinear FE model was successfully validated through a novel experimental technique for generating wedge-shape fractures in human thoracolumbar vertebrae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Denosumab reduced the incidence of new fractures in postmenopausal women with osteoporosis by 68% at the spine and 40% at the hip over 36 months compared with placebo in the FREEDOM study. This efficacy was supported by improvements from baseline in vertebral (18.2%) strength in axial compression and femoral (8.6%) strength in sideways fall configuration at 36 months, estimated in Newtons by an established voxel-based finite element (FE) methodology. Since FE analyses rely on the choice of meshes, material properties, and boundary conditions, the aim of this study was to independently confirm and compare the effects of denosumab on vertebral and femoral strength during the FREEDOM trial using an alternative smooth FE methodology. Unlike the previous FE study, effects on femoral strength in physiological stance configuration were also examined. QCT data for the proximal femur and two lumbar vertebrae were analyzed by smooth FE methodology at baseline, 12, 24, and 36 months for 51 treated (denosumab) and 47 control (placebo) subjects. QCT images were segmented and converted into smooth FE models to compute bone strength. L1 and L2 vertebral bodies were virtually loaded in axial compression and the proximal femora in both fall and stance configurations. Denosumab increased vertebral body strength by 10.8%, 14.0%, and 17.4% from baseline at 12, 24, and 36 months, respectively (p < 0.0001). Denosumab also increased femoral strength in the fall configuration by 4.3%, 5.1%, and 7.2% from baseline at 12, 24, and 36 months, respectively (p < 0.0001). Similar improvements were observed in the stance configuration with increases of 4.2%, 5.2%, and 5.2% from baseline (p ≤ 0.0007). Differences between the increasing strengths with denosumab and the decreasing strengths with placebo were significant starting at 12 months (vertebral and femoral fall) or 24 months (femoral stance). Using an alternative smooth FE methodology, we confirmed the significant improvements in vertebral body and proximal femur strength previously observed with denosumab. Estimated increases in strength with denosumab and decreases with placebo were highly consistent between both FE techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The International Society for Clinical Densitometry (ISCD) has developed new official positions for the clinical use of quantitative computed tomography (QCT)-based finite element analysis of the spine and hip. The ISCD task force for QCT reviewed the evidence for clinical applications and presented a report with recommendations at the 2015 ISCD Position Development Conference. Here we discuss the agreed upon ISCD official positions with supporting medical evidence, rationale, controversy, and suggestions for further study. Parts I and III address the clinical use of QCT of the hip, and the clinical feasibility of existing techniques for opportunistic screening of osteoporosis using CT scans obtained for other diagnosis such as colonography was addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone's material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of thirteen femora predicted the strength (R2=0.84, SEE=540 N, 16.2%), stiffness (R2=0.82, SEE=233 N/mm, 18.0%) and fracture energy (R2=0.72, SEE=3.85 J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Periacetabular Osteotomy (PAO) is a joint preserving surgical intervention intended to increase femoral head coverage and thereby to improve stability in young patients with hip dysplasia. Previously, we developed a CT-based, computer-assisted program for PAO diagnosis and planning, which allows for quantifying the 3D acetabular morphology with parameters such as acetabular version, inclination, lateral center edge (LCE) angle and femoral head coverage ratio (CO). In order to verify the hypothesis that our morphology-based planning strategy can improve biomechanical characteristics of dysplastic hips, we developed a 3D finite element model based on patient-specific geometry to predict cartilage contact stress change before and after morphology-based planning. Our experimental results demonstrated that the morphology-based planning strategy could reduce cartilage contact pressures and at the same time increase contact areas. In conclusion, our computer-assisted system is an efficient tool for PAO planning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitinol stent oversizing is frequently performed in peripheral arteries to ensure a desirable lumen gain. However, the clinical effect of mis-sizing remains controversial. The goal of this study was to provide a better understanding of the structural and hemodynamic effects of Nitinol stent oversizing. Five patient-specific numerical models of non-calcified popliteal arteries were developed to simulate the deployment of Nitinol stents with oversizing ratios ranging from 1.1 to 1.8. In addition to arterial biomechanics, computational fluid dynamics methods were adopted to simulate the physiological blood flow inside the stented arteries. Results showed that stent oversizing led to a limited increase in the acute lumen gain, albeit at the cost of a significant increase in arterial wall stresses. Furthermore, localized areas affected by low Wall Shear Stress increased with higher oversizing ratios. Stents were also negatively impacted by the procedure as their fatigue safety factors gradually decreased with oversizing. These adverse effects to both the artery walls and stents may create circumstances for restenosis. Although the ideal oversizing ratio is stent-specific, this study showed that Nitinol stent oversizing has a very small impact on the immediate lumen gain, which contradicts the clinical motivations of the procedure.