123 resultados para deep


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via 10Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECT: The goal of this study was to investigate the efficacy of long-term deep brain stimulation (DBS) of the posteroventral lateral globus pallidus internus (GPi) accomplished using a single-contact monopolar electrode in patients with advanced Parkinson disease (PD). METHODS: Sixteen patients suffering from severe PD and levodopa-induced side effects such as dyskinesias and on-off fluctuations were enrolled in a prospective study protocol. There were six women and 10 men and their mean age at surgery was 65 years. All patients underwent implantation of a monopolar electrode in the posteroventral lateral GPi. Initially, nine patients received unilateral stimulation. Three of these patients underwent contralateral surgery at a later time. Ten patients received bilateral stimulation (contemporaneous bilateral surgery was performed in seven patients and staged bilateral surgery in the three patients who had received unilateral stimulation initially). Formal assessments were performed during both off-medication and on-medication (levodopa) periods preoperatively, and at 3 and 12 months postoperatively. There were no serious complications related to surgery or to DBS. Two transient adverse events occurred: in one patient a small pallidal hematoma developed, resulting in a prolonged micropallidotomy effect, and in another patient a subcutaneous hemorrhage occurred at the site of the pacemaker. In patients who received unilateral DBS, the Unified Parkinson's Disease Rating Scale activities of daily living (ADL) score during the off-levodopa period decreased from 30.8 at baseline to 20.4 at 3 months (34% improvement) and 20.6 at 12 months (33% improvement) postoperatively. The motor score during the off period improved from 57.2 at baseline to 35.2 at 3 months (38% improvement) and 35.3 at 12 months (38% improvement) postoperatively. Bilateral DBS resulted in a reduction in the ADL score during the off period from 34.9 at baseline to 22.3 at 3 months (36% improvement) and 22.9 at 12 months (34% improvement). The motor score for the off period changed from 63.4 at baseline to 40.3 at 3 months (36% improvement) and 37.5 at 12 months (41% improvement). In addition, there were significant improvements in patients' symptoms during the on period and in on-off motor fluctuations. CONCLUSIONS: Pallidal DBS accomplished using a monopolar electrode is a safe and effective procedure for treatment of advanced PD. Compared with pallidotomy, the advantages of pallidal DBS lie in its reversibility and the option to perform bilateral surgery in one session. Comparative studies in which DBS is applied to other targets are needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Deep brain stimulation (DBS) has emerged as a useful therapeutic option for patients with insufficient benefit from conservative treatment. METHODS: Nine patients with chronic DBS who suffered from cervical dystonia (4), generalized dystonia (2), hemidystonia (1), paroxysmal dystonia (1) and Meige syndrome (1) were available for formal follow-up at three years postoperatively, and beyond up to 10 years. All patients had undergone pallidal stimulation except one patient with paroxysmal dystonia who underwent thalamic stimulation. RESULTS: Maintained improvement was seen in all patients with pallidal stimulation up to 10 years after surgery except in one patient who had a relative loss of benefit in dystonia ratings but continued to have improved disability scores. After nine years of chronic thalamic stimulation there was a mild loss of efficacy which was regained when the target was changed to the pallidum in the patient with paroxysmal dystonia. There were no major complications related to surgery or to chronic stimulation. Pacemakers had to be replaced within 1.5 to 2 years, in general. CONCLUSION: DBS maintains marked long-term symptomatic and functional improvement in the majority of patients with dystonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECT: The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. METHODS: Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. RESULTS: Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. CONCLUSIONS: This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.

Relevância:

20.00% 20.00%

Publicador: