52 resultados para data validation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The liquid argon calorimeter is a key component of the ATLAS detector installed at the CERN Large Hadron Collider. The primary purpose of this calorimeter is the measurement of electron and photon kinematic properties. It also provides a crucial input for measuring jets and missing transverse momentum. An advanced data monitoring procedure was designed to quickly identify issues that would affect detector performance and ensure that only the best quality data are used for physics analysis. This article presents the validation procedure developed during the 2011 and 2012 LHC data-taking periods, in which more than 98% of the proton-proton luminosity recorded by ATLAS at a centre-of-mass energy of 7–8 TeV had calorimeter data quality suitable for physics analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To validate a radioimmunoassay for measurement of procollagen type III amino terminal propeptide (PIIINP) concentrations in canine serum and bronchoalveolar lavage fluid (BALF) and investigate the effects of physiologic and pathologic conditions on PIIINP concentrations. SAMPLE POPULATION Sera from healthy adult (n = 70) and growing dogs (20) and dogs with chronic renal failure (CRF; 10), cardiomyopathy (CMP; 12), or degenerative valve disease (DVD; 26); and sera and BALF from dogs with chronic bronchopneumopathy (CBP; 15) and healthy control dogs (10 growing and 9 adult dogs). PROCEDURE A radioimmunoassay was validated, and a reference range for serum PIIINP (S-PIIINP) concentration was established. Effects of growth, age, sex, weight, CRF, and heart failure on S-PIIINP concentration were analyzed. In CBP-affected dogs, S-PIIINP and BALF-PIIINP concentrations were evaluated. RESULTS The radioimmunoassay had good sensitivity, linearity, precision, and reproducibility and reasonable accuracy for measurement of S-PIIINP and BALF-PIIINP concentrations. The S-PIIINP concentration reference range in adult dogs was 8.86 to 11.48 mug/L. Serum PIIINP concentration correlated with weight and age. Growing dogs had significantly higher S-PIIINP concentrations than adults, but concentrations in CRF-, CMP-, DVD-, or CBP-affected dogs were not significantly different from control values. Mean BALF-PIIINP concentration was significantly higher in CBP-affected dogs than in healthy adults. CONCLUSIONS AND CLINICAL RELEVANCE In dogs, renal or cardiac disease or CBP did not significantly affect S-PIIINP concentration; dogs with CBP had high BALF-PIIINP concentrations. Data suggest that the use of PIIINP as a marker of pathologic fibrosis might be limited in growing dogs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: Near-infrared spectroscopy (NIRS) enables the non-invasive measurement of changes in hemodynamics and oxygenation in tissue. Changes in light-coupling due to movement of the subject can cause movement artifacts (MAs) in the recorded signals. Several methods have been developed so far that facilitate the detection and reduction of MAs in the data. However, due to fixed parameter values (e.g., global threshold) none of these methods are perfectly suitable for long-term (i.e., hours) recordings or were not time-effective when applied to large datasets. We aimed to overcome these limitations by automation, i.e., data adaptive thresholding specifically designed for long-term measurements, and by introducing a stable long-term signal reconstruction. Our new technique (“acceleration-based movement artifact reduction algorithm”, AMARA) is based on combining two methods: the “movement artifact reduction algorithm” (MARA, Scholkmann et al. Phys. Meas. 2010, 31, 649–662), and the “accelerometer-based motion artifact removal” (ABAMAR, Virtanen et al. J. Biomed. Opt. 2011, 16, 087005). We describe AMARA in detail and report about successful validation of the algorithm using empirical NIRS data, measured over the prefrontal cortex in adolescents during sleep. In addition, we compared the performance of AMARA to that of MARA and ABAMAR based on validation data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Behavior is one of the most important indicators for assessing cattle health and well-being. The objective of this study was to develop and validate a novel algorithm to monitor locomotor behavior of loose-housed dairy cows based on the output of the RumiWatch pedometer (ITIN+HOCH GmbH, Fütterungstechnik, Liestal, Switzerland). Data of locomotion were acquired by simultaneous pedometer measurements at a sampling rate of 10 Hz and video recordings for manual observation later. The study consisted of 3 independent experiments. Experiment 1 was carried out to develop and validate the algorithm for lying behavior, experiment 2 for walking and standing behavior, and experiment 3 for stride duration and stride length. The final version was validated, using the raw data, collected from cows not included in the development of the algorithm. Spearman correlation coefficients were calculated between accelerometer variables and respective data derived from the video recordings (gold standard). Dichotomous data were expressed as the proportion of correctly detected events, and the overall difference for continuous data was expressed as the relative measurement error. The proportions for correctly detected events or bouts were 1 for stand ups, lie downs, standing bouts, and lying bouts and 0.99 for walking bouts. The relative measurement error and Spearman correlation coefficient for lying time were 0.09% and 1; for standing time, 4.7% and 0.96; for walking time, 17.12% and 0.96; for number of strides, 6.23% and 0.98; for stride duration, 6.65% and 0.75; and for stride length, 11.92% and 0.81, respectively. The strong to very high correlations of the variables between visual observation and converted pedometer data indicate that the novel RumiWatch algorithm may markedly improve automated livestock management systems for efficient health monitoring of dairy cows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Index tracking has become one of the most common strategies in asset management. The index-tracking problem consists of constructing a portfolio that replicates the future performance of an index by including only a subset of the index constituents in the portfolio. Finding the most representative subset is challenging when the number of stocks in the index is large. We introduce a new three-stage approach that at first identifies promising subsets by employing data-mining techniques, then determines the stock weights in the subsets using mixed-binary linear programming, and finally evaluates the subsets based on cross validation. The best subset is returned as the tracking portfolio. Our approach outperforms state-of-the-art methods in terms of out-of-sample performance and running times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Predicting long-term survival after admission to hospital is helpful for clinical, administrative and research purposes. The Hospital-patient One-year Mortality Risk (HOMR) model was derived and internally validated to predict the risk of death within 1 year after admission. We conducted an external validation of the model in a large multicentre study. METHODS We used administrative data for all nonpsychiatric admissions of adult patients to hospitals in the provinces of Ontario (2003-2010) and Alberta (2011-2012), and to the Brigham and Women's Hospital in Boston (2010-2012) to calculate each patient's HOMR score at admission. The HOMR score is based on a set of parameters that captures patient demographics, health burden and severity of acute illness. We determined patient status (alive or dead) 1 year after admission using population-based registries. RESULTS The 3 validation cohorts (n = 2,862,996 in Ontario, 210 595 in Alberta and 66,683 in Boston) were distinct from each other and from the derivation cohort. The overall risk of death within 1 year after admission was 8.7% (95% confidence interval [CI] 8.7% to 8.8%). The HOMR score was strongly and significantly associated with risk of death in all populations and was highly discriminative, with a C statistic ranging from 0.89 (95% CI 0.87 to 0.91) to 0.92 (95% CI 0.91 to 0.92). Observed and expected outcome risks were similar (median absolute difference in percent dying in 1 yr 0.3%, interquartile range 0.05%-2.5%). INTERPRETATION The HOMR score, calculated using routinely collected administrative data, accurately predicted the risk of death among adult patients within 1 year after admission to hospital for nonpsychiatric indications. Similar performance was seen when the score was used in geographically and temporally diverse populations. The HOMR model can be used for risk adjustment in analyses of health administrative data to predict long-term survival among hospital patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of pressure-driven laminar flow has an impact on zone and boundary dispersion in open tubular CE. The GENTRANS dynamic simulator for electrophoresis was extended with Taylor-Aris diffusivity which accounts for dispersion due to the parabolic flow profile associated with pressure-driven flow. Effective diffusivity of analyte and system zones as functions of the capillary diameter and the amount of flow in comparison to molecular diffusion alone were studied for configurations with concomitant action of imposed hydrodynamic flow and electroosmosis. For selected examples under realistic experimental conditions, simulation data are compared with those monitored experimentally using modular CE setups featuring both capacitively coupled contactless conductivity and UV absorbance detection along a 50 μm id fused-silica capillary of 90 cm total length. The data presented indicate that inclusion of flow profile based Taylor-Aris diffusivity provides realistic simulation data for analyte and system peaks, particularly those monitored in CE with conductivity detection.