97 resultados para cell-surface
Resumo:
Eph receptor tyrosine kinases and their cell-surface-bound ligands, the ephrins, regulate axon guidance and bundling in the developing brain, control cell migration and adhesion, and help patterning the embryo. Here we report that two ephrinB ligands and three EphB receptors are expressed in and regulate the formation of the vascular network. Mice lacking ephrinB2 and a proportion of double mutants deficient in EphB2 and EphB3 receptor signaling die in utero before embryonic day 11.5 (E11.5) because of defects in the remodeling of the embryonic vascular system. Our phenotypic analysis suggests complex interactions and multiple functions of Eph receptors and ephrins in the embryonic vasculature. Interaction between ephrinB2 on arteries and its EphB receptors on veins suggests a role in defining boundaries between arterial and venous domains. Expression of ephrinB1 by arterial and venous endothelial cells and EphB3 by veins and some arteries indicates that endothelial cell-to-cell interactions between ephrins and Eph receptors are not restricted to the border between arteries and veins. Furthermore, expression of ephrinB2 and EphB2 in mesenchyme adjacent to vessels and vascular defects in ephB2/ephB3 double mutants indicate a requirement for ephrin-Eph signaling between endothelial cells and surrounding mesenchymal cells. Finally, ephrinB ligands induce capillary sprouting in vitro with a similar efficiency as angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF), demonstrating a stimulatory role of ephrins in the remodeling of the developing vascular system.
Resumo:
Persistence in canine distemper virus (CDV) infection is correlated with very limited cell-cell fusion and lack of cytolysis induced by the neurovirulent A75/17-CDV compared to that of the cytolytic Onderstepoort vaccine strain. We have previously shown that this difference was at least in part due to the amino acid sequence of the fusion (F) protein (P. Plattet, J. P. Rivals, B. Zuber, J. M. Brunner, A. Zurbriggen, and R. Wittek, Virology 337:312-326, 2005). Here, we investigated the molecular mechanisms of the neurovirulent CDV F protein underlying limited membrane fusion activity. By exchanging the signal peptide between both F CDV strains or replacing it with an exogenous signal peptide, we demonstrated that this domain controlled intracellular and consequently cell surface protein expression, thus indirectly modulating fusogenicity. In addition, by serially passaging a poorly fusogenic virus and selecting a syncytium-forming variant, we identified the mutation L372W as being responsible for this change of phenotype. Intriguingly, residue L372 potentially is located in the helical bundle domain of the F(1) subunit. We showed that this mutation drastically increased fusion activity of F proteins of both CDV strains in a signal peptide-independent manner. Due to its unique structure even among morbilliviruses, our findings with respect to the signal peptide are likely to be specifically relevant to CDV, whereas the results related to the helical bundle add new insights to our growing understanding of this class of F proteins. We conclude that different mechanisms involving multiple domains of the neurovirulent A75/17-CDV F protein act in concert to limit fusion activity, preventing lysis of infected cells, which ultimately may favor viral persistence.
Resumo:
Mycoplasma mycoides subsp. mycoides SC, the aetiological agent of contagious bovine pleuropneumonia (CBPP), is considered the most pathogenic of the Mycoplasma species. Its virulence is probably the result of a coordinated action of various components of an antigenically and functionally dynamic surface architecture. The different virulence attributes allow the pathogen to evade the host's immune defence, adhere tightly to the host cell surface, persist and disseminate in the host causing mycoplasmaemia, efficiently import energetically valuable nutrients present in the environment, and release and simultaneously translocate toxic metabolic pathway products to the host cell where they cause cytotoxic effects that are known to induce inflammatory processes and disease. This strategy enables the mycoplasma to exploit the minimal genetic information in its small genome, not only to fulfil the basic functions for its replication but also to damage host cells in intimate proximity thereby acquiring the necessary bio-molecules, such as amino acids and nucleic acid precursors, for its own biosynthesis and survival.
Resumo:
Matrix metalloproteinases (MMPs) and tumour necrosis factor alpha (TNF-alpha) converting enzyme (TACE) contribute synergistically to the pathophysiology of bacterial meningitis. TACE proteolytically releases several cell-surface proteins, including the proinflammatory cytokine TNF-alpha and its receptors. TNF-alpha in turn stimulates cells to produce active MMPs, which facilitate leucocyte extravasation and brain oedema by degradation of extracellular matrix components. In the present time-course studies of pneumococcal meningitis in infant rats, MMP-8 and -9 were 100- to 1000-fold transcriptionally upregulated, both in CSF cells and in brain tissue. Concentrations of TNF-alpha and MMP-9 in CSF peaked 12 h after infection and were closely correlated. Treatment with BB-1101 (15 mg/kg subcutaneously, twice daily), a hydroxamic acid-based inhibitor of MMP and TACE, downregulated the CSF concentration of TNF-alpha and decreased the incidences of seizures and mortality. Therapy with BB-1101, together with antibiotics, attenuated neuronal necrosis in the cortex and apoptosis in the hippocampus when given as a pretreatment at the time of infection and also when administration was started 18 h after infection. Functionally, the neuroprotective effect of BB-1101 preserved learning performance of rats assessed 3 weeks after the disease had been cured. Thus, combined inhibition of MMP and TACE offers a novel therapeutic strategy to prevent brain injury and neurological sequelae in bacterial meningitis.
Resumo:
PURPOSE: Neutral endopeptidase (CD10), an ectopeptidase bound to the cell surface, is thought to be a potential prognostic marker for prostate cancer. EXPERIMENTAL DESIGN: Prostate cancer patients (N = 3,261) treated by radical prostatectomy at a single institution were evaluated by using tissue microarray. Follow-up data were available for 2,385 patients. The cellular domain (membranous, membranous-cytoplasmatic, and cytoplasmatic only) of CD10 expression was analyzed immunohistochemically and correlated with various clinical and histopathologic features of the tumors. RESULTS: CD10 expression was detected in 62.2% of cancer samples and occurred preferentially in higher Gleason pattern (P < 0.0001). CD10 expression positively correlated with adverse tumor features such as elevated preoperative prostate-specific antigen (PSA), higher Gleason score, and advanced stage (P < 0.0001 each). Survival analyses showed that PSA recurrence was significantly associated with the staining pattern of CD10 expression. Outcome significantly declined from negative over membranous, membranous-cytoplasmatic, to exclusively cytoplasmatic CD10 expression (P < 0.0001). In multivariate analysis, CD10 expression was an independent predictor for PSA failure (P = 0.0343). CONCLUSIONS: CD10 expression is an unfavorable independent risk factor in prostate cancer. The subcellular location of CD10 protein is associated with specific clinical courses, suggesting an effect on different important biological properties of prostate cancer cells. The frequent expression of CD10 in prostate cancer and the strong association of CD10 with unfavorable tumor features may qualify this biomarker for targeted therapies.
Resumo:
Cystic fibrosis (CF) lung disease is characterized by infection with Pseudomonas aeruginosa and a sustained accumulation of neutrophils. In this study, we analyzed 1) the expression of MyD88-dependent TLRs on circulating and airway neutrophils in P. aeruginosa-infected CF patients, P. aeruginosa-infected non-CF bronchiectasis patients, and noninfected healthy control subjects and 2) studied the regulation of TLR expression and functionality on neutrophils in vitro. TLR2, TLR4, TLR5, and TLR9 expression was increased on airway neutrophils compared with circulating neutrophils in CF and bronchiectasis patients. On airway neutrophils, TLR5 was the only TLR that was significantly higher expressed in CF patients compared with bronchiectasis patients and healthy controls. Studies using confocal microscopy and flow cytometry revealed that TLR5 was stored intracellularly in neutrophils and was mobilized to the cell surface in a protein synthesis-independent manner through protein kinase C activation or after stimulation with TLR ligands and cytokines characteristic of the CF airway microenvironment. The most potent stimulator of TLR5 expression was the bacterial lipoprotein Pam(3)CSK(4). Ab-blocking experiments revealed that the effect of Pam(3)CSK(4) was mediated through cooperation of TLR1 and TLR2 signaling. TLR5 activation enhanced the phagocytic capacity and the respiratory burst activity of neutrophils, which was mediated, at least partially, via a stimulation of IL-8 production and CXCR1 signaling. This study demonstrates a novel mechanism of TLR regulation in neutrophils and suggests a critical role for TLR5 in neutrophil-P. aeruginosa interactions in CF lung disease.
Resumo:
The astacins are a subfamily of the metzincin superfamily of metalloproteinases. The first to be characterized was the crayfish enzyme astacin. To date more than 200 members of this family have been identified in species ranging from bacteria to humans. Astacins are involved in developmental morphogenesis, matrix assembly, tissue differentiation and digestion. Family members include the procollagen C-proteinase (BMP1, bone morphogenetic protein 1), tolloid and mammalian tolloid-like, HMP (Hydra vulgaris metalloproteinase), sea urchin BP10 (blastula protein) and SPAN (Strongylocentrotus purpuratus astacin), the 'hatching' subfamily comprising alveolin, ovastacin, LCE, HCE ('low' and 'high' choriolytic enzymes), nephrosin (from carp head kidney), UVS.2 from frog, and the meprins. In the human and mouse genomes, there are six astacin family genes (two meprins, three BMP1/tolloid-like, one ovastacin), but in Caenorhabditis elegans there are 40. Meprins are the only astacin proteinases that function on the membrane and extracellularly by virtue of the fact that they can be membrane-bound or secreted. They are unique in their domain structure and covalent subunit dimerization, oligomerization propensities, and expression patterns. They are normally highly regulated at the transcriptional and post-translational levels, localize to specific membranes or extracellular spaces, and can hydrolyse biologically active peptides, cytokines, extracellular matrix (ECM) proteins and cell-surface proteins. The in vivo substrates of meprins are unknown, but the abundant expression of these proteinases in the epithelial cells of the intestine, kidney and skin provide clues to their functions.
Resumo:
The recent identification of a cellular balance between ceramide and sphingosine 1-phosphate (S1P) as a critical regulator of cell growth and death has stimulated increasing research effort to clarify the role of ceramide and S1P in various diseases associated with dysregulated cell proliferation and apoptosis. S1P acts mainly, but not exclusively, by binding to and activating specific cell surface receptors, the so-called S1P receptors. These receptors belong to the class of G protein-coupled receptors that constitute five subtypes, denoted as S1P(1)-S1P(5), and represent attractive pharmacological targets to interfere with S1P action. Whereas classical receptor antagonists will directly block S1P action, S1P receptor agonists have also proven useful, as recently shown for the sphingolipid-like immunomodulatory substance FTY720. When phosphorylated by sphingosine kinase to yield FTY720 phosphate, it acutely acts as an agonist at S1P receptors, but upon prolonged presence, it displays antagonistic activity by specifically desensitizing the S1P(1) receptor subtype. This commentary will cover the most recent developments in the field of S1P receptor pharmacology and highlights the potential therapeutic benefit that can be expected from these novel drug targets in the future.
Resumo:
Extracellular nucleotides (e.g. ATP, UTP, ADP) are released by activated endothelium, leukocytes and platelets within the injured vasculature and bind specific cell-surface type-2 purinergic (P2) receptors. This process drives vascular inflammation and thrombosis within grafted organs. Importantly, there are also vascular ectonucleotidases i.e. ectoenzymes that hydrolyze extracellular nucleotides in the blood to generate nucleosides (viz. adenosine). Endothelial cell NTPDase1/CD39 has been shown to critically modulate levels of circulating nucleotides. This process tends to limit the activation of platelet and leukocyte expressed P2 receptors and also generates adenosine to reverse inflammatory events. This vascular protective CD39 activity is rapidly inhibited by oxidative reactions, such as is observed with liver ischemia reperfusion injury. In this review, we chiefly address the impact of these signaling cascades following liver transplantation. Interestingly, the hepatic vasculature, hepatocytes and all non-parenchymal cell types express several components co-ordinating the purinergic signaling response. With hepatic and vascular dysfunction, we note heightened P2- expression and alterations in ectonucleotidase expression and function that may predispose to progression of disease. In addition to documented impacts upon the vasculature during engraftment, extracellular nucleotides also have direct influences upon liver function and bile flow (both under physiological and pathological states). We have recently shown that alterations in purinergic signaling mediated by altered CD39 expression have major impacts upon hepatic metabolism, repair mechanisms, regeneration and associated immune responses. Future clinical applications in transplantation might involve new therapeutic modalities using soluble recombinant forms of CD39, altering expression of this ectonucleotidase by drugs and/or using small molecules to inhibit deleterious P2-mediated signaling while augmenting beneficial adenosine-mediated effects within the transplanted liver.
Resumo:
Siglecs are cell-surface proteins found primarily on hematopoietic cells. By definition, they are members of the immunoglobulin gene super-family and bind sialic acid. Most contain cytoplasmic tyrosine motifs implicated in cell signaling. This review will first summarize characteristics common and unique to Siglecs, followed by a discussion of each human Siglec in numerical order, mentioning in turn its closest murine ortholog or paralog. Each section will describe its pattern of cellular expression, latest known immune functions, ligands, and signaling pathways, with the focus being predominantly on CD33-related Siglecs. Potential clinical and therapeutic implications of each Siglec will also be covered.
Resumo:
Oxidized low-density lipoprotein (oxLDL) induced-apoptosis of vascular cells may participate in plaque instability and rupture. We have previously shown that vascular smooth muscle cells (VSMC) stably expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis than VSMC expressing lower level of caveolin-1, and this was correlated with enhanced Ca(2+) entry and pro-apoptotic events. In this study we aimed to identify the molecular events involved in oxLDL-induced Ca(2+) influx and their regulation by the structural protein caveolin-1. In VSMC, transient receptor potential canonical-1 (TRPC1) silencing by ARN interference, prevents the Ca(2+) influx and reduces the toxicity induced by oxLDL. Moreover, caveolin-1 silencing induces concomitant decrease of TRPC1 expression and reduces oxLDL-induced-apoptosis of VSMC. OxLDL enhanced the cell surface expression of TRPC1, as shown by biotinylation of cell surface proteins, and induced TRPC1 translocation into caveolar compartment, as assessed by subcellular fractionation. OxLDL-induced TRPC1 translocation was dependent on actin cytoskeleton and associated with a dramatic rise of 7-ketocholesterol (a major oxysterol in oxLDL) into caveolar membranes, whereas the caveolar content of cholesterol was unchanged. Altogether, the reported results show that TRPC1 channels play a role in Ca(2+) influx and Ca(2+) homeostasis deregulation that mediate apoptosis induced by oxLDL. These data also shed new light on the role of caveolin-1 and caveolar compartment as important regulators of TRPC1 trafficking to the plasma membrane and apoptotic processes that play a major role in atherosclerosis.
Resumo:
The successful peptide receptor imaging of tumors, as exemplified for somatostatin receptors, is based on the overexpression of peptide receptors in selected tumors and the high-affinity binding to these tumors of agonist radioligands that are subsequently internalized into the tumor cells in which they accumulate. Although in vitro studies have shown ample evidence that the ligand-receptor complex is internalized, in vivo evidence of agonist-induced internalization of peptide receptors, such as somatostatin receptors, is missing. METHODS: Rats subcutaneously transplanted with the somatostatin receptor subtype 2 (sst(2))-expressing AR42J tumor cells were treated with intravenous injections of various doses of the sst(2) agonist [Tyr(3), Thr(8)]-octreotide (TATE) or of the sst(2) antagonist 1,4,7,10-tetraazacyclododecane-N,N',N'',N''',-tetraacetic acid (DOTA)-Bass and were sacrificed at various times ranging from 2.5 min to 24 h after injection. The tumors and pancreas were then removed from each animal. All tissue samples were processed for sst(2) immunohistochemistry using sst(2)-specific antibodies. RESULTS: Compared with the sst(2) receptors in untreated animals, which localized at the plasma membrane in pancreatic and AR42J tumor cells, the sst(2) receptors in treated animals are detected intracellularly after an intravenous injection of the agonist TATE. Internalization is fast, as the receptors are already internalizing 2.5 min after TATE injection. The process is extremely efficient, as most of the cell surface receptors internalize into the cell and are found in endosomelike structures after TATE injection. The internalization is most likely reversible, because 24 h after injection the receptors are again found at the cell surface. The process is also agonist-dependent, because internalization is seen with high-affinity sst(2) agonists but not with high-affinity sst(2) antagonists. The same internalization properties are seen in pancreatic and AR42J tumor cells. They can further be confirmed in vitro in human embryonic kidney-sst(2) cells, with an immunofluorescence microscopy-based sst(2) internalization assay. CONCLUSION: These animal data strongly indicate that the process of in vivo sst(2) internalization after agonist stimulation is fast, extremely efficient, and fully functional under in vivo conditions in neoplastic and physiologic sst(2) target tissues. This molecular process is, therefore, likely to be responsible for the high and long-lasting uptake of sst(2) radioligands seen in vivo in sst(2)-expressing tumors.
Resumo:
Intestinal intraepithelial lymphocytes (IEL) are specialized subsets of T cells with distinct functional capacities. While some IEL subsets are circulating, others such as CD8alphaalpha TCRalphabeta IEL are believed to represent non-circulating resident T cell subsets [Sim, G.K., Intraepithelial lymphocytes and the immune system. Adv. Immunol., 1995. 58: 297-343.]. Current methods to obtain enriched preparations of intraepithelial lymphocytes are mostly based on Percoll density gradient or magnetic bead-based technologies [Lundqvist, C., et al., Isolation of functionally active intraepithelial lymphocytes and enterocytes from human small and large intestine. J. Immunol. Methods, 1992. 152(2): 253-263.]. However, these techniques are hampered by a generally low yield of isolated cells, and potential artifacts due to the interference of the isolation procedure with subsequent functional assays, in particular, when antibodies against cell surface markers are required. Here we describe a new method for obtaining relatively pure populations of intestinal IEL (55-75%) at a high yield (>85%) by elutriation centrifugation. This technique is equally suited for the isolation and enrichment of intraepithelial lymphocytes of both mouse and human origin. Time requirements for fractionating cell suspensions by elutriation centrifugation are comparable to Percoll-, or MACS-based isolation procedures. Hence, the substantially higher yield and the consistent robust enrichment for intraepithelial lymphocytes, together with the gentle treatment of the cells during elutriation that does not interfere with subsequent functional assays, are important aspects that are in favor of using this elegant technology to obtain unmanipulated, unbiased populations of intestinal intraepithelial lymphocytes, and, if desired, also of pure epithelial cells.
Resumo:
Siglec-8, the eighth member of the sialic acid-binding, immunoglobulin [Ig]-like lectin family, was initially discovered as a cell surface protein selectively expressed on human eosinophils. It is now know to also be expressed by mast cells and basophils. Siglec-8 engagement with specific antibodies causes apoptosis via caspase and mitochondrial-dependent pathways. For mast cells, inhibition of mediator release, but no apoptosis, is observed. Siglec-F is the closest mouse paralog to Siglec-8, and both selectively bind the sulfated glycan 6’-sulfo-sialyl Lewis X. Antibodies to Siglec-F reduce blood and tissue eosinophil numbers in vivo. This suggests that Siglec-8 may be a useful future therapeutic target for allergic and other eosinophilic disorders.
Resumo:
A poly(ethylene glycol) (PEG)-based hydrogel was used as a scaffold for chondrocyte culture. Branched PEG-vinylsulfone macromers were end-linked with thiol-bearing matrix metalloproteinase (MMP)-sensitive peptides (GCRDGPQGIWGQDRCG) to form a three-dimensional network in situ under physiologic conditions. Both four- and eight-armed PEG macromer building blocks were examined. Increasing the number of PEG arms increased the elastic modulus of the hydrogels from 4.5 to 13.5 kPa. PEG-dithiol was used to prepare hydrogels that were not sensitive to degradation by cell-derived MMPs. Primary bovine calf chondrocytes were cultured in both MMP-sensitive and MMP-insensitive hydrogels, formed from either four- or eight-armed PEG. Most (>90%) of the cells inside the gels were viable after 1 month of culture and formed cell clusters. Gel matrices with lower elastic modulus and sensitivity to MMP-based matrix remodeling demonstrated larger clusters and more diffuse, less cell surface-constrained cell-derived matrix in the chondron, as determined by light and electron microscopy. Gene expression experiments by real-time RT-PCR showed that the expression of type II collagen and aggrecan was increased in the MMP-sensitive hydrogels, whereas the expression level of MMP-13 was increased in the MMP-insensitive hydrogels. These results indicate that cellular activity can be modulated by the composition of the hydrogel. This study represents one of the first examples of chondrocyte culture in a bioactive synthetic material that can be remodeled by cellular protease activity.