66 resultados para cell membrane integrity
Resumo:
Introduction: The re sponse of crop plants ex posed on drought or heat shock is related to de crease in the synthesis of normal proteins, accompanied by increased translation of heat shock proteins (HSPs). Though drought and heat stress have been studied individually, little is known about their combined effect on plants. Methods: The wheat (Triticum aestivum L.) varieties (Katya-tolerant, Sadovo or Mladka-susceptible) were potted in soil. Eight-day-old plants were ex posed to with drawing water for seven days. Heat shock was realized in growth chamber at 40 °C for 6h. A combination of drought and heat shock was per formed by subjecting drought-stressed plants to heat shock treatment. Expression of HSPs in the first leaf of wheat varieties was analyzed by SDS electrophoresis and immunoblotting. Polyclonal antibodies against HSP20, HSP60, HSP110 and mononclonal antibodies against HSP70 were used to distinguish the mentioned HSPs. Results: The leaf relative water content (RWC), which indicated the level of plant dehydration decreased significantly (34 %) under drought stressed conditions The electrolyte leakage of ions (EL), representing the level of the cell membrane stability in creased mark edly (68 %), especially under combination of drought and heat. Maximum EL was ob served in drought susceptible varieties Sadovo and Mladka. Drought and heat shock combination in the wheat plants resulted in the induction of specific HSPs. Conclusions: Our results demonstrate that the response of the wheat plants to a combination of drought and heat stress is different from the response of plants to each of these stresses applied separately. Induction of synergetic effect on HSP expression in case of combination between drought and heat was discussed in the case of two contrasting wheat varieties.
Resumo:
The hemagglutinin (H) gene of canine distemper virus (CDV) encodes the receptor-binding protein. This protein, together with the fusion (F) protein, is pivotal for infectivity since it contributes to the fusion of the viral envelope with the host cell membrane. Of the two receptors currently known for CDV (nectin-4 and the signaling lymphocyte activation molecule [SLAM]), SLAM is considered the most relevant for host susceptibility. To investigate how evolution might have impacted the host-CDV interaction, we examined the functional properties of a series of missense single nucleotide polymorphisms (SNPs) naturally accumulating within the H-gene sequences during the transition between two distinct but related strains. The two strains, a wild-type strain and a consensus strain, were part of a single continental outbreak in European wildlife and occurred in distinct geographical areas 2 years apart. The deduced amino acid sequence of the two H genes differed at 5 residues. A panel of mutants carrying all the combinations of the SNPs was obtained by site-directed mutagenesis. The selected mutant, wild type, and consensus H proteins were functionally evaluated according to their surface expression, SLAM binding, fusion protein interaction, and cell fusion efficiencies. The results highlight that the most detrimental functional effects are associated with specific sets of SNPs. Strikingly, an efficient compensational system driven by additional SNPs appears to come into play, virtually neutralizing the negative functional effects. This system seems to contribute to the maintenance of the tightly regulated function of the H-gene-encoded attachment protein. Importance: To investigate how evolution might have impacted the host-canine distemper virus (CDV) interaction, we examined the functional properties of naturally occurring single nucleotide polymorphisms (SNPs) in the hemagglutinin gene of two related but distinct strains of CDV. The hemagglutinin gene encodes the attachment protein, which is pivotal for infection. Our results show that few SNPs have a relevant detrimental impact and they generally appear in specific combinations (molecular signatures). These drastic negative changes are neutralized by compensatory mutations, which contribute to maintenance of an overall constant bioactivity of the attachment protein. This compensational mechanism might reflect the reaction of the CDV machinery to the changes occurring in the virus following antigenic variations critical for virulence.
Resumo:
The majority of pemphigus vulgaris (PV) patients suffer from a live-threatening loss of intercellular adhesion between keratinocytes (acantholysis). The disease is caused by auto-antibodies that bind to desmosomal cadherins desmoglein (Dsg) 3 or Dsg3 and Dsg1 in mucous membranes and skin. A currently unresolved controversy in PV is whether apoptosis is involved in the pathogenic process. The objective of this study was to perform preclinical studies to investigate apoptotic pathway activation in PV pathogenesis with the goal to assess its potential for clinical therapy. For this purpose, we investigated mouse and human skin keratinocyte cultures treated with PV antibodies (the experimental Dsg3 monospecific antibody AK23 or PV patients IgG), PV mouse models (passive transfer of AK23 or PVIgG into adult and neonatal mice) as well as PV patients' biopsies (n=6). A combination of TUNEL assay, analyses of membrane integrity, early apoptotic markers such as cleaved poly-ADP-ribose polymerase (PARP) and the collapse of actin cytoskeleton failed to provide evidence for apoptosis in PV pathogenesis. However, the in vitro and in vivo PV models, allowing to monitor progression of lesion formation, revealed an early, transient and low-level caspase-3 activation. Pharmacological inhibition confirmed the functional implication of caspase-3 in major events in PV such as shedding of Dsg3, keratin retraction, proliferation including c-Myc induction, p38MAPK activation and acantholysis. Together, these data identify low-level caspase-3 activation downstream of disrupted Dsg3 trans- or cis-adhesion as a major event in PV pathogenesis that is non-synonymous with apoptosis and represents, unlike apoptotic components, a promising target for clinical therapy. At a broader level, these results posit that an impairment of adhesive functions in concert with low-level, non-lethal caspase-3 activation can evoke profound cellular changes which may be of relevance for other diseases including cancer.
Resumo:
Endocannabinoids are arachidonic acid-derived endogenous lipids that activate the endocannabinoid system which plays a major role in health and disease. The primary endocannabinoids are anandamide (AEA, N-arachidonoylethanolamine) and 2-arachidonoyl glycerol. While their biosynthesis and metabolism have been studied in detail, it remains unclear how endocannabinoids are transported across the cell membrane. In this review, we critically discuss the different models of endocannabinoid trafficking, focusing on AEA cellular uptake which is best studied. The evolution of the current knowledge obtained with different AEA transport inhibitors is reviewed and the confusions caused by the lack of their specificity discussed. A comparative summary of the most important AEA uptake inhibitors and the studies involving their use is provided. Based on a comprehensive literature analysis, we propose a model of facilitated AEA membrane transport followed by intracellular shuttling and sequestration. We conclude that novel and more specific probes will be essential to identify the missing targets involved in endocannabinoid membrane transport.
Resumo:
The significance of specific lipids for proton pumping by the bacterial rhodopsin proteorhodopsin (pR) was studied. To this end, it was examined whether pR preferentially binds certain lipids and whether molecular properties of the lipid environment affect the photocycle. pR's photocycle was followed by microsecond flash-photolysis in the visible spectral range. It was fastest in phosphatidylcholine liposomes (soy bean lipid), intermediate in 3-[(3-cholamidopropyl) dimethylammonio] propanesulfonate (CHAPS): 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bicelles and in Triton X-100, and slowest when pR was solubilized in CHAPS. In bicelles with different lipid compositions, the nature of the head groups, the unsaturation level and the fatty acid chain length had small effects on the photocycle. The specific affinity of pR for lipids of the expression host Escherichia coli was investigated by an optimized method of lipid isolation from purified membrane protein using two different concentrations of the detergent N-dodecyl-β-d-maltoside (DDM). We found that 11 lipids were copurified per pR molecule at 0.1% DDM, whereas essentially all lipids were stripped off from pR by 1% DDM. The relative amounts of copurified phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin did not correlate with the molar percentages normally present in E. coli cells. The results indicate a predominance of phosphatidylethanolamine species in the lipid annulus around recombinant pR that are less polar than the dominant species in the cell membrane of the expression host E. coli.
Resumo:
FTY720 (Fingolimod; Gilenya®) is an immune-modulatory prodrug which, after intracellular phosphorylation by sphingosine kinase 2 (SphK2) and export, mimics effects of the endogenous lipid mediator sphingosine-1-phosphate. Fingolimod has been introduced to treat relapsing-remitting multiple sclerosis. However, little has been published about the immune cell membrane penetration and subcellular distribution of FTY720 and FTY720-P. Thus, we applied a newly established LC-MS/MS method to analyze the subcellular distribution of FTY720 and FTY720-P in subcellular compartments of spleen cells of wild type, SphK1- and SphK2-deficient mice. These studies demonstrated that, when normalized to the original cell volume and calculated on molar basis, FTY720 and FTY720-P dramatically accumulated several hundredfold within immune cells reaching micromolar concentrations. The amount and distribution of FTY720 was differentially affected by SphK1- and SphK2-deficiency. On the background of recently described relevant intracellular FTY720 effects in the nanomolar range and the prolonged application in multiple sclerosis, this data showing a substantial intracellular accumulation of FTY720, has to be considered for benefit/risk ratio estimates.
Resumo:
To increase the efficiency of equine semen, it could be useful to split the artificial insemination dose and refreeze the redundant spermatozoa. In experiment I, semen of 10 sires of the Hanoverian breed, with poor and good semen freezability, was collected by artificial vagina, centrifuged, extended in INRA82 at 400 × 106 sperm/mL, and automatically frozen. After this first routinely applied freezing program, semen from each stallion was thawed, resuspended in INRA82 at 40 × 106 sperm/mL, filled in 0.5-mL straws, and refrozen. These steps were repeated, and sperm concentration was adjusted to 20 × 106 sperm/mL after a third freezing cycle. Regardless of stallion freezability group, sperm motility and sperm membrane integrity (FITC/PNA-Syto-PI-stain) decreased stepwise after first, second, and third freezing (62.3% ± 9.35, 24.0% ± 15.4, 3.3% ± 4.34, P ≤ .05; 29.6% ± 8.64, 14.9% ± 6.38, 8.3% ± 3.24, P ≤ .05), whereas the percentage of acrosome-reacted cells increased (19.5% ± 7.59, 23.9% ± 8.51, 29.2% ± 6.58, P ≤ .05). Sperm chromatin integrity was unaffected after multiple freeze/thaw cycles (DFI value: 18.6% ± 6.6, 17.2% ± 6.84, 17.1% ± 7.21, P > .05). In experiment II estrous, Hanoverian warmblood mares were inseminated with a total of 200 × 106 spermatozoa of two stallions with either good or poor semen freezability originating from the first, second, and third freeze/thaw cycle. First-cycle pregnancy rates were 4/10, 40%; 1/10, 10%; and 0/10, 0%. In conclusion, as expected, sperm viability of stallion spermatozoa significantly decreases as a consequence of multiple freezing. However, sperm chromatin integrity was not affected. Pregnancy rates after insemination of mares with refrozen semen are reduced.
Resumo:
From its invention in the 1970s, the patch clamp technique is the gold standard in electrophysiology research and drug screening because it is the only tool enabling accurate investigation of voltage-gated ion channels, which are responsible for action potentials. Because of its key role in drug screening, innovation efforts are being made to reduce its complexity toward more automated systems. While some of these new approaches are being adopted in pharmaceutical companies, conventional patch-clamp remains unmatched in fundamental research due to its versatility. Here, we merged the patch clamp and atomic force microscope (AFM) techniques, thus equipping the patch-clamp with the sensitive AFM force control. This was possible using the FluidFM, a force-controlled nanopipette based on microchanneled AFM cantilevers. First, the compatibility of the system with patch-clamp electronics and its ability to record the activity of voltage-gated ion channels in whole-cell configuration was demonstrated with sodium (NaV1.5) channels. Second, we showed the feasibility of simultaneous recording of membrane current and force development during contraction of isolated cardiomyocytes. Force feedback allowed for a gentle and stable contact between AFM tip and cell membrane enabling serial patch clamping and injection without apparent cell damage.
Resumo:
During the last months, the number of reports on Holstein calves suffering from incurable idiopathic diarrhea dramatically increased. Affected calves showed severe hypocholesterolemia and mostly died within days up to a few months after birth. This new autosomal monogenic recessive inherited fat metabolism disorder, termed cholesterol deficiency (CD), is caused by a loss of function mutation of the bovine gene. The objective of the present study was to investigate specific components of lipid metabolism in 6 homozygous for the mutation (CDS) and 6 normal Holstein calves with different genotypes. Independent of sex, CDS had significantly lower plasma concentrations of total cholesterol (TC), free cholesterol (FC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL-C), triacylglycerides (TAG), and phospholipids (PL) compared with homozygous wild-type calves ( < 0.05). Furthermore, we studied the effect of the genotype on cholesterol metabolism in adult Holstein breeding bulls of Swissgenetics. Among a total of 254 adult males, the homozygous mutant genotype was absent, 36 bulls were heterozygous carriers (CDC), and 218 bulls were homozygous wild-type (CDF). In CDC bulls, plasma concentrations of TC, FC, HDL-C, LDL-C, VLDL-C, TAG, and PL were lower compared with CDF bulls ( < 0.05). The ratios of FC:cholesteryl esters (CE) and FC:TC were higher in CDC bulls compared with CDF bulls, whereas the ratio of CE:TC was lower in CDC bulls compared with CDF bulls ( < 0.01). In conclusion, the CD-associated mutation was shown to affect lipid metabolism in affected Holstein calves and adult breeding bulls. Besides cholesterol, the concentrations of PL, TAG, and lipoproteins also were distinctly reduced in homozygous and heterozygous carriers of the mutation. Beyond malabsorption of dietary lipids, deleterious effects of apolipoprotein B deficiency on hepatic lipid metabolism, steroid biosynthesis, and cell membrane function can be expected, which may result in unspecific symptoms of reduced fertility, growth, and health.
Resumo:
In this paper we report on our study of the changes in biomass, lipid composition, and fermentation end products, as well as in the ATP level and synthesis rate in cultivated potato (Solanum tuberosum) cells submitted to anoxia stress. During the first phase of about 12 h, cells coped with the reduced energy supply brought about by fermentation and their membrane lipids remained intact. The second phase (12–24 h), during which the energy supply dropped down to 1% to 2% of its maximal theoretical normoxic value, was characterized by an extensive hydrolysis of membrane lipids to free fatty acids. This autolytic process was ascribed to the activation of a lipolytic acyl hydrolase. Cells were also treated under normoxia with inhibitors known to interfere with energy metabolism. Carbonyl-cyanide-4-trifluoromethoxyphenylhydrazone did not induce lipid hydrolysis, which was also the case when sodium azide or salicylhydroxamic acid were fed separately. However, the simultaneous use of sodium azide plus salicylhydroxamic acid or 2-deoxy-D-glucose plus iodoacetate with normoxic cells promoted a lipid hydrolysis pattern similar to that seen in anoxic cells. Therefore, a threshold exists in the rate of ATP synthesis (approximately 10 μmol g−1 fresh weight h−1), below which the integrity of the membranes in anoxic potato cells cannot be preserved.
Resumo:
Between day E8 and E12 of embryonic development, the chicken chorioallantoic membrane (CAM) undergoes massive structural rearrangement enabling calcium-uptake from the eggshell to supply the growing embryo. However, the contribution of the various cell types of the chorionic epithelium including the capillary covering (CC) cells, villus cavity (VC) cells, endothelial-like cells, and basal cells to this developmental program is largely unknown. In order to obtain markers for the different cell types in the chorionic epithelium, we determined the expression patterns of various calcium-binding annexins in the developing chicken CAM. By reverse transcription/polymerase chain reaction with primers deduced from nucleotide sequences available in various databases, the presence of annexin (anx)-1, anx-2, anx-5, and anx-6 was demonstrated at days E8 and E12. Quantitative immunoblotting with novel antibodies raised against the recombinant proteins revealed that anx-1 and anx-5 were significantly up-regulated at day E12, whereas anx-2 and anx-6 expression remained almost unchanged in comparison to levels at day E8. Immunohistochemistry of paraffin-embedded sections of E12 CAM revealed anx-1 in CC cells and VC cells. Anx-2 was localized in capillaries in the chorionic epithelium and in basal cells of the allantoic epithelium, whereas anx-6 was detected in basal cells or endothelial-like cells of the chorionic epithelium and in the media of larger vessels in the mesenchyme. A 2-day exposure of the CAM to a tumor cell spheroid resulted in strong proliferation of anx-1-expressing CC cells suggesting that these cells participate in the embryonic response to experimental intervention. Thus, annexins exhibit complementary expression patterns and represent appropriate cell markers for the further characterization of CAM development and the interpretation of results obtained when using CAM as an experimental model.
Resumo:
VE-cadherin is the essential adhesion molecule in endothelial adherens junctions, and the regulation of protein tyrosine phosphorylation is thought to be important for the control of adherens junction integrity. We show here that VE-PTP (vascular endothelial protein tyrosine phosphatase), an endothelial receptor-type phosphatase, co-precipitates with VE-cadherin, but not with beta-catenin, from cell lysates of transfected COS-7 cells and of endothelial cells. Co-precipitation of VE-cadherin and VE-PTP required the most membrane-proximal extracellular domains of each protein. Expression of VE-PTP in triple-transfected COS-7 cells and in CHO cells reversed the tyrosine phosphorylation of VE-cadherin elicited by vascular endothelial growth factor receptor 2 (VEGFR-2). Expression of VE-PTP under an inducible promotor in CHO cells transfected with VE-cadherin and VEGFR-2 increased the VE-cadherin-mediated barrier integrity of a cellular monolayer. Surprisingly, a catalytically inactive mutant form of VE-PTP had the same effect on VE-cadherin phosphorylation and cell layer permeability. Thus, VE-PTP is a transmembrane binding partner of VE-cadherin that associates through an extracellular domain and reduces the tyrosine phosphorylation of VE-cadherin and cell layer permeability independently of its enzymatic activity.
Resumo:
Upon the incidence of DNA stress, the ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. We demonstrate that the cell cycle regulatory WEE1 kinase gene of Arabidopsis thaliana is transcriptionally activated upon the cessation of DNA replication or DNA damage in an ATR- or ATM-dependent manner, respectively. In accordance with a role for WEE1 in DNA stress signaling, WEE1-deficient plants showed no obvious cell division or endoreduplication phenotype when grown under nonstress conditions but were hypersensitive to agents that impair DNA replication. Induced WEE1 expression inhibited plant growth by arresting dividing cells in the G2-phase of the cell cycle. We conclude that the plant WEE1 gene is not rate-limiting for cycle progression under normal growth conditions but is a critical target of the ATR-ATM signaling cascades that inhibit the cell cycle upon activation of the DNA integrity checkpoints, coupling mitosis to DNA repair in cells that suffer DNA damage.
Resumo:
Interactions between follicular epithelial cells and extracellular matrix (ECM) are supposed to play an important role in the development and maintenance of thyroid tissue architecture. In the present study we have therefore investigated the synthesis of ECM components by a feline thyroid cell line which is able to form follicle-like structures in vitro, and also in v-ras-transfected and control-transfected sublines. Transfections were performed by lipofection with pZSR (viral Harvey ras gene; neo) and pSV2-neo (control, neo only) plasmids. We have adapted a semisolid culture system composed exclusively of polymerized alginate and therefore devoid of ECM components. Feline cells embedded in alginate gels as single cells and cultured for up to 90 days formed cell clusters within 10 days. Follicle-like structures were formed in the original cell lines and also in the v-ras- and control-transfected cells. Differences in proliferation rates were observed, the v-ras-transfected cells growing up to two to three times faster than the non-transfected cells. Immunostaining was done using rabbit first antibodies directed against mouse collagen IV, human fibronectin, laminin (tumor Engelbreth-Holm-Swarm laminin), perlecan and other ECM components. For comparison, immunostaining was also performed on cryosections of nodular goiters of six hyperthyroid cats. The cell lines and their transfected clones stained strongly positive for collagen IV and fibronectin, and positively but less strongly for laminin and perlecan. The cat goiter tissue stained positively for collagen IV, laminin, perlecan, and fibronectin, and positive staining for S-laminin (containing the beta2-chain) was seen in blood vessel walls in this tissue. In conclusion, cat cell lines grow three-dimensionally in alginate beads over several weeks, they form follicle-like structures and express the same ECM components as the native cat goiter tissue. Transfection with v-ras does increase proliferation rate, but does not fundamentally alter formation of follicle-like structures and ECM expression. Alginate gel culture is a promising new tool for the study of follicular morphogenesis, polarity, the expression pattern of ECM components and of the interaction between thyrocytes and ECM. It avoids interference caused by gels composed of ECM components.
Resumo:
The signals and molecular mechanisms that regulate the replication of terminally differentiated beta cells are unknown. Here, we report the identification and characterization of transmembrane protein 27 (Tmem27, collectrin) in pancreatic beta cells. Expression of Tmem27 is reduced in Tcf1(-/-) mice and is increased in islets of mouse models with hypertrophy of the endocrine pancreas. Tmem27 forms dimers and its extracellular domain is glycosylated, cleaved and shed from the plasma membrane of beta cells. This cleavage process is beta cell specific and does not occur in other cell types. Overexpression of full-length Tmem27, but not the truncated or soluble protein, leads to increased thymidine incorporation, whereas silencing of Tmem27 using RNAi results in a reduction of cell replication. Furthermore, transgenic mice with increased expression of Tmem27 in pancreatic beta cells exhibit increased beta cell mass. Our results identify a pancreatic beta cell transmembrane protein that regulates cell growth of pancreatic islets.