47 resultados para cell cycle proteins


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trypanosomes show an intriguing organization of their mitochondrial DNA into a catenated network, the kinetoplast DNA (kDNA). While more than 30 proteins involved in kDNA replication have been described, only few components of kDNA segregation machinery are currently known. Electron microscopy studies identified a high-order structure, the tripartite attachment complex (TAC), linking the basal body of the flagellum via the mitochondrial membranes to the kDNA. Here we describe TAC102, a novel core component of the TAC, which is essential for proper kDNA segregation during cell division. Loss of TAC102 leads to mitochondrial genome missegregation but has no impact on proper organelle biogenesis and segregation. The protein is present throughout the cell cycle and is assembled into the newly developing TAC only after the pro-basal body has matured indicating a hierarchy in the assembly process. Furthermore, we provide evidence that the TAC is replicated de novo rather than using a semi-conservative mechanism. Lastly, we demonstrate that TAC102 lacks an N-terminal mitochondrial targeting sequence and requires sequences in the C-terminal part of the protein for its proper localization.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The serine protease inhibitor N-alpha-tosyl-L-phenylalanine chloromethyl ketone (TPCK) can interfere with cell-cycle progression and has also been shown either to protect cells from apoptosis or to induce apoptosis. We tested the effect of TPCK on two transformed T-cell lines. Both Jurkat T-cells and Theileria parva-transformed T-cells were shown to be highly sensitive to TPCK-induced growth arrest and apoptosis. Surprisingly, we found that the thiol antioxidant, N-acetylcysteine (NAC), as well as L- or D-cysteine blocked TPCK-induced growth arrest and apoptosis. TPCK inhibited constitutive NF-kappaB activation in T. parva-transformed T-cells, with phosphorylation of IkappaBalpha and IkappaBbeta being inhibited with different kinetics. TPCK-mediated inhibition of IkappaB phosphorylation, NF-kappaB DNA binding and transcriptional activity were also prevented by NAC or cysteine. Our observations indicate that apoptosis and NF-kappaB inhibition induced by TPCK result from modifications of sulphydryl groups on proteins involved in regulating cell survival and the NF-kappaB activation pathway(s).