51 resultados para calibration of rainfall-runoff models
Resumo:
Stable isotope analyses of discrete seasonal layers from a 108-yr annually laminated freeze-core from Baldeg-gersee, a small, eutrophic lake in central Switzerland, provide information on the climatological and environmental factors, including lake eutrophication, that control oxygen and carbon isotopic composition of epilimnic biologically induced calcite precipitate. During the last 100 yr, Baldeggersee has undergone major increases in productivity and eutrophication in response to nutrient loading from agriculture and industrialization in the lake's watershed. Calibration of the isotopic signal in Baldeggersee to historical limnological data quantitatively links evidence of isotopic depletion in the sedimented calcite to trophic state of the lake. δ18O values from the spring/summer “light” sediment layers steadily diverged to more depleted values in response to historical eutrophication: measured δ18O values were up to 21.5‰ more negative than calculated equilibrium δ18O values. Evidence for 13C depletion in the calcite, relative to equilibrium values, is more difficult to ascertain because of an overall dominance of isotopic enrichment in the dissolved inorganic pool as productivity in Baldeggersee increases. A positive association exists between the degree of oxygen-18 depletion and the calcite crystal size. Thus, large amorphous calcite grains can be used as a proxy for recognizing apparent isotopic nonequilibrium in sediment sequences from highly productive lacustrine environments from all geologic time scales. In contrast to the light layers, the oxygen isotopic composition of the calcite in the late summer/fall “dark” sediment layers is unaffected by the apparent isotope nonequilibrium. Oxygen and carbon isotope values from the dark laminae in the Baldeggersee sediment therefore provide environmental and climatological proxies that can be calibrated with known environmental and regional climate data for the last century.
Resumo:
One to two percent of all children are born with a developmental disorder requiring pediatric hospital admissions. For many such syndromes, the molecular pathogenesis remains poorly characterized. Parallel developmental disorders in other species could provide complementary models for human rare diseases by uncovering new candidate genes, improving the understanding of the molecular mechanisms and opening possibilities for therapeutic trials. We performed various experiments, e.g. combined genome-wide association and next generation sequencing, to investigate the clinico-pathological features and genetic causes of three developmental syndromes in dogs, including craniomandibular osteopathy (CMO), a previously undescribed skeletal syndrome, and dental hypomineralization, for which we identified pathogenic variants in the canine SLC37A2 (truncating splicing enhancer variant), SCARF2 (truncating 2-bp deletion) and FAM20C (missense variant) genes, respectively. CMO is a clinical equivalent to an infantile cortical hyperostosis (Caffey disease), for which SLC37A2 is a new candidate gene. SLC37A2 is a poorly characterized member of a glucose-phosphate transporter family without previous disease associations. It is expressed in many tissues, including cells of the macrophage lineage, e.g. osteoclasts, and suggests a disease mechanism, in which an impaired glucose homeostasis in osteoclasts compromises their function in the developing bone, leading to hyperostosis. Mutations in SCARF2 and FAM20C have been associated with the human van den Ende-Gupta and Raine syndromes that include numerous features similar to the affected dogs. Given the growing interest in the molecular characterization and treatment of human rare diseases, our study presents three novel physiologically relevant models for further research and therapy approaches, while providing the molecular identity for the canine conditions.
Resumo:
The natural regulation of the water cycle by tropical montane forests is an important ecosystem service. Within this chapter we focus on water balance and regulation of the water cycle. Differences of rainfall-runoff generation across scales change from a near-surface event water driven system in pristine rainforest-covered micro-catchments to a more groundwater pre-event water dominated one on the mesoscale. The highly dynamic discharges are often correlated with total suspended sediment loads. However, we also observed total suspended sediment peaks at times of low flow, indicating a decoupling of erosion and stream transport and a triggering of landslides not directly related to hydrological processes. We also summarize likely future trends of water-related ecosystem services and expect an increase in human use and benefits of fresh water use whereas changes in water regulation and water purification services remain unchanged on a high level.
Resumo:
Data on rainfall, runoff and sediment loss from different land use types have been collected by the Soil Conservation Research Programme in seven small catchments (73-673 hectares) throughout the Ethiopian Highlands since the early 1980s. Monitoring was carried out on a storm-to-storm basis for extended periods of 10-20 years, and the data are analysed here to assess long-term effects of changes. Soil and water conservation technologies were introduced in the early years in the catchments in view of their capacity to reduce runoff and sediment yield. Results indicate that rainfall did not substantially change over the observation periods. Land use changes and land degradation, however, altered runoff, as shown by the data from small test plots (30 m2), which were not altered by conservation measures during the monitoring periods. Sediment delivery from the catchments may have decreased due to soil and water conservation, while runoff rates did not change significantly. Extrapolation of the results in the highlands, however, showed that expansion of cultivated and grazing land induced by population growth may have increased the overall surface runoff. Watershed management in the catchments, finally, had beneficial effects on ecosystem services by reducing soil erosion, restoring soil fertility, enhancing agricultural production, and maintaining overall runoff to the benefit of lowland areas and neighbouring countries.
Resumo:
Sound knowledge of the spatial and temporal patterns of rockfalls is fundamental for the management of this very common hazard in mountain environments. Process-based, three-dimensional simulation models are nowadays capable of reproducing the spatial distribution of rockfall occurrences with reasonable accuracy through the simulation of numerous individual trajectories on highly-resolved digital terrain models. At the same time, however, simulation models typically fail to quantify the ‘real’ frequency of rockfalls (in terms of return intervals). The analysis of impact scars on trees, in contrast, yields real rockfall frequencies, but trees may not be present at the location of interest and rare trajectories may not necessarily be captured due to the limited age of forest stands. In this article, we demonstrate that the coupling of modeling with tree-ring techniques may overcome the limitations inherent to both approaches. Based on the analysis of 64 cells (40 m × 40 m) of a rockfall slope located above a 1631-m long road section in the Swiss Alps, we illustrate results from 488 rockfalls detected in 1260 trees. We illustrate that tree impact data cannot only be used (i) to reconstruct the real frequency of rockfalls for individual cells, but that they also serve (ii) the calibration of the rockfall model Rockyfor3D, as well as (iii) the transformation of simulated trajectories into real frequencies. Calibrated simulation results are in good agreement with real rockfall frequencies and exhibit significant differences in rockfall activity between the cells (zones) along the road section. Real frequencies, expressed as rock passages per meter road section, also enable quantification and direct comparison of the hazard potential between the zones. The contribution provides an approach for hazard zoning procedures that complements traditional methods with a quantification of rockfall frequencies in terms of return intervals through a systematic inclusion of impact records in trees.