74 resultados para bone growth
Resumo:
OBJECTIVES The application of an enamel matrix derivative (EMD) for regenerative periodontal surgery has been shown to promote formation of new cementum, periodontal ligament, and alveolar bone. In intrabony defects with a complicated anatomy, the combination of EMD with various bone grafting materials has resulted in additional clinical improvements, but the initial cellular response of osteoblasts coming in contact with these particles have not yet been fully elucidated. The objective of the present study was to evaluate the in vitro effects of EMD combined with a natural bone mineral (NBM) on a wide variety of genes, cytokines, and transcription factors and extracellular matrix proteins on primary human osteoblasts. MATERIAL AND METHODS Primary human osteoblasts were seeded on NBM particles pre-coated with versus without EMD and analyzed for gene differences using a human osteogenesis gene super-array (Applied Biosystems). Osteoblast-related genes include those transcribed during bone mineralization, ossification, bone metabolism, cell growth and differentiation, as well as gene products representing extracellular matrix molecules, transcription factors, and cell adhesion molecules. RESULTS EMD promoted gene expression of various osteoblast differentiation markers including a number of collagen types and isoforms, SMAD intracellular proteins, osteopontin, cadherin, alkaline phosphatase, and bone sialoprotein. EMD also upregulated a variety of growth factors including bone morphogenetic proteins, vascular endothelial growth factors, insulin-like growth factor, transforming growth factor, and their associated receptor proteins. CONCLUSION The results from the present study demonstrate that EMD is capable of activating a wide variety of genes, growth factors, and cytokines when pre-coated onto NBM particles. CLINICAL RELEVANCE The described in vitro effects of EMD on human primary osteoblasts provide further biologic support for the clinical application of a combination of EMD with NBM particles in periodontal and oral regenerative surgery.
Tenocytes of chronic rotator cuff tendon tears can be stimulated by platelet-released growth factors
Resumo:
BACKGROUND Bone-to-tendon healing after rotator cuff repairs is mainly impaired by poor tissue quality. The tenocytes of chronic rotator cuff tendon tears are not able to synthesize normal fibrocartilaginous extracellular matrix (ECM). We hypothesized that in the presence of platelet-released growth factors (PRGF), tenocytes from chronically retracted rotator cuff tendons proliferate and synthesize the appropriate ECM proteins. MATERIALS AND METHODS Tenocytes from 8 patients with chronic rotator cuff tears were cultured for 4 weeks in 2 different media: standard medium (Iscove's Modified Dulbecco's Media + 10% fetal calf serum + 1% nonessential amino acids + 0.5 μg/mL ascorbic acid) and media with an additional 10% PRGF. Cell proliferation was assessed at 7, 14, 21, and 28 days. Messenger (m)RNA levels of collagens I, II, and X, decorin, biglycan, and aggrecan were analyzed using real time reverse-transcription polymerase chain reaction. Immunocytochemistry was also performed. RESULTS The proliferation rate of tenocytes was significantly higher at all time points when cultured with PRGF. At 21 days, the mRNA levels for collagens I, II, and X, decorin, aggrecan, and biglycan were significantly higher in the PRGF group. The mRNA data were confirmed at protein level by immunocytochemistry. CONCLUSIONS PRGFs enhance tenocyte proliferation in vitro and promote synthesis of ECM to levels similar to those found with insertion of the normal human rotator cuffs. CLINICAL RELEVANCE Biologic augmentation of repaired rotator cuffs with PRGF may enhance the properties of the repair tissue. However, further studies are needed to determine if application of PRGF remains safe and effective in long-term clinical studies. LEVEL OF EVIDENCE Basic Science Study, Cell Biology.
Resumo:
BACKGROUND AND PURPOSE Autografts are used for bone reconstruction in regenerative medicine including oral and maxillofacial surgery. Bone grafts release paracrine signals that can reach mesenchymal cells at defect sites. The impact of the paracrine signals on osteogenic, adipogenic, and chondrogenic differentiation of mesenchymal cells has remained unclear. MATERIAL AND METHODS Osteogenesis, adipogenesis, and chondrogenesis were studied with murine ST2 osteoblast progenitors, 3T3-L1 preadipocytes, and ATDC5 prechondrogenic cells, respectively. Primary periodontal fibroblasts from the gingiva, from the periodontal ligament, and from bone were also included in the analysis. Cells were exposed to bone-conditioned medium (BCM) that was prepared from porcine cortical bone chips. RESULTS BCM inhibited osteogenic and adipogenic differentiation of ST2 and 3T3-L1 cells, respectively, as shown by histological staining and gene expression. No substantial changes in the expression of chondrogenic genes were observed in ATDC5 cells. Primary periodontal fibroblasts also showed a robust decrease in alkaline phosphatase and peroxisome proliferator-activated receptor gamma (PPARγ) expression when exposed to BCM. BCM also increased collagen type 10 expression. Pharmacologic blocking of transforming growth factor (TGF)-β receptor type I kinase with SB431542 and the smad-3 inhibitor SIS3 at least partially reversed the effect of BCM on PPARγ and collagen type 10 expression. In support of BCM having TGF-β activity, the respective target genes were increasingly expressed in periodontal fibroblasts. CONCLUSIONS The present work is a pioneer study on the paracrine activity of bone grafts. The findings suggest that cortical bone chips release soluble signals that can modulate differentiation of mesenchymal cells in vitro at least partially involving TGF-β signaling.
Resumo:
Intervertebral disc (IVD) cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC) is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5) by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate and GDF5 gene transfer was achieved by in vitro electroporation. Transfected cells were cultured as monolayers and as 3D cultures in 1.2% alginate bead culture. MSC expressed GDF5 efficiently for up to 21 days. The combination of GDF5 gene transfer and 3D culture in alginate showed an upregulation of aggrecan and SOX9, two markers for chondrogenesis, and KRT19 as a marker for discogenesis compared to untransfected cells. The cells encapsulated in alginate produced more proteoglycans expressed in GAG/DNA ratio. Furthermore, GDF5 transfected MCS injected into an IVD papain degeneration organ culture model showed a partial recovery of the GAG/DNA ratio after 7 days. In this study we demonstrate the potential of GDF5 transfected MSC as a promising approach for clinical translation for disc regeneration.
Resumo:
BACKGROUND Vigorous sporting activity during the growth years is associated with an increased risk of having a cam-type deformity develop. The underlying cause of this osseous deformity is unclear. One may speculate whether this is caused by reactive bone apposition in the region of the anterosuperior head-neck junction or whether sports activity alters the shape of and growth in the growth plate. If the latter is true, then one would expect athletes to show an abnormal shape of the capital growth plate (specifically, the epiphyseal extension) before and/or after physeal closure. QUESTIONS/PURPOSES We therefore raised three questions: (1) Do adolescent basketball players show abnormal epiphyseal extension? (2) Does the epiphyseal extension differ before and after physeal closure? (3) Is abnormal epiphyseal extension associated with high alpha angles? METHODS We performed a case-control comparative analysis of young (age range, 9-22 years) male elite basketball athletes with age-matched nonathletes, substratified by whether they had open or closed physes. We measured epiphyseal extension on radial-sequence MRI cuts throughout the cranial hemisphere from 9 o'clock (posterior) to 3 o'clock (anterior). Epiphyseal extension was correlated to alpha angle measurements at the same points. RESULTS Epiphyseal extension was increased in all positions in the athletes compared with the control group. On average, athletes showed epiphyseal extension of 0.67 to 0.83 versus 0.53 to 0.71 in control subjects. In the control group epiphyseal extension was increased at all measurement points in hips after physeal closure compared with before physeal closure. In contrast, the subgroup of athletes with a closed growth plate only had increased epiphyseal extension at the 3 o'clock position compared with the athletes with an open [corrected] growth plate (0.64-0.70). We observed a correlation between an alpha angle greater than 55° and greater epiphyseal extension in the anterosuperior femoral head quadrant: the corresponding Spearman r values were 0.387 (all hips) and 0.285 (alpha angle>55°) for the aggregate anterosuperior quadrant. CONCLUSIONS These findings suggest that a cam-type abnormality in athletes is a consequence of an alteration of the growth plate rather than reactive bone formation. High-level sports activity during growth may be a new and distinct risk factor for a cam-type deformity.
Resumo:
BACKGROUND Pulmonary fibrosis may result from abnormal alveolar wound repair after injury. Hepatocyte growth factor (HGF) improves alveolar epithelial wound repair in the lung. Stem cells were shown to play a major role in lung injury, repair and fibrosis. We studied the presence, origin and antifibrotic properties of HGF-expressing stem cells in usual interstitial pneumonia. METHODS Immunohistochemistry was performed in lung tissue sections and primary alveolar epithelial cells obtained from patients with usual interstitial pneumonia (UIP, n = 7). Bone marrow derived stromal cells (BMSC) from adult male rats were transfected with HGF, instilled intratracheally into bleomycin injured rat lungs and analyzed 7 and 14 days later. RESULTS In UIP, HGF was expressed in specific cells mainly located in fibrotic areas close to the hyperplastic alveolar epithelium. HGF-positive cells showed strong co-staining for the mesenchymal stem cell markers CD44, CD29, CD105 and CD90, indicating stem cell origin. HGF-positive cells also co-stained for CXCR4 (HGF+/CXCR4+) indicating that they originate from the bone marrow. The stem cell characteristics were confirmed in HGF secreting cells isolated from UIP lung biopsies. In vivo experiments showed that HGF-expressing BMSC attenuated bleomycin induced pulmonary fibrosis in the rat, indicating a beneficial role of bone marrow derived, HGF secreting stem cells in lung fibrosis. CONCLUSIONS HGF-positive stem cells are present in human fibrotic lung tissue (UIP) and originate from the bone marrow. Since HGF-transfected BMSC reduce bleomycin induced lung fibrosis in the bleomycin lung injury and fibrosis model, we assume that HGF-expressing, bone-marrow derived stem cells in UIP have antifibrotic properties.
Resumo:
Lameness represents a major welfare and production issue in the poultry industry with a recent survey estimating 27% of birds lame and 3% unable to walk by 40 d of age. A variety of factors may induce lameness and are typically grouped into 2 broad classes on the basis of being infectious or skeletal in nature with the latter accounting for the majority of cases. The current work sought to build upon a large body of literature assessing the anatomical properties of bone in lame birds. Our specific objectives sought to identify relationships between relevant anatomical properties of the tibia and metatarsus using digital quantification from radiographs of legs and a measure of walking difficulty. Resulting output was statistically analyzed to assess 1) observer reliability for consistency in placing the leg during the radiograph procedure and quantification of the various measures within a radiograph, 2) the relationship between the various measurements of anatomical bone properties and sex, bird mass, and gait score, and 3) the relationship between each measurement and leg symmetry. Our anatomical bone measures were found to be reliable (intra-rater and test-retest reliabilities < 0.75) within radiograph for all measures and 8 of the 10 measures across radiographs. Several measures of bone properties in the tibia correlated to difficulty walking as measured by gait score (P < 0.05), indicating greater angulations with increasing lameness. Of the measures that manifested a gait score × bird mass interaction, heavier birds appeared to exhibit less angulation with increasing difficulty walking with lighter birds the opposite. These interactions suggest possibilities for influencing effects of activity or feed intake on bone mineralization with the bone angulation observed. Our efforts agree with that of others and indicate that angulation of the tibia may be related to lameness, though subsequent efforts involving comprehensive measures of bird activity, growth rates, and internal bone structure will be needed if the validity of the measures are to be accepted.
Resumo:
Brushite and octacalcium phosphate (OCP) crystals are well-known precursors of hydroxylapatite (HAp), the main mineral found in bone. In this report, we present a new method for biomimicking brushite and OCP using single and double diffusion techniques. Brushite and OCP crystals were grown in an iota-carrageenan gel. The aggregates were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and thermal gravimetric analysis (TGA). SEM revealed different morphologies of brushite crystals from highly porous aggregates to plate-shaped forms. OCP crystals grown in iota-carrageenan showed a porous spherical shape different from brushite growth forms. The XRD method demonstrated that the single-diffusion method favors the formation of monoclinic brushite. In contrast, the double diffusion method was found to promote the formation of the triclinic octacalcium phosphate OCP phase. By combining the different parameters for crystal growth in carrageenan, such as ion concentration, gel pH and gel density, it is possible to modify the morphology of composite crystals, change the phase of calcium phosphate and modulate the amount of carrageenan inclusion in crystals. This study suggests that iota-carrageenan is a high-molecular-weight polysaccharide that is potentially applicable for controlling calcium phosphate crystallization.
Resumo:
OBJECTIVE We investigated the skeletal growth profile of female rats from birth to senescence (100weeks) on the basis of sequential radiometrical, hormonal and biochemical parameters. DESIGN Weaning rats entered the study which was divided into two sections: a) sequential measurements of vertebral and tibial growths and bone mineral density (BMD), estimation of mineral content of the entire skeleton (BMC) and chemical analysis of vertebral Ca; and b) determination of basal and pulsatile growth hormone (rGH), insulin-like growth hormone (IGF-I), estradiol (E2), parathyroid hormone (PTH), osteocalcin (OC) and urinary d-pyridinoline (dp) throughout the experimental period. RESULTS Vertebral and tibial growths ceased at week 25 whereas BMD and BMC as well as total vertebral Ca exhibited a peak bone mass at week 40. rGH pulsatile profiles were significantly higher in younger animals coinciding with the period of active growth and IGF-I peaked at 7weeks, slowly declining thereafter and stabilizing after week 60. OC and dp closely paralleled IGF-I coinciding with the period of enhanced skeletal growth, remaining thereafter in the low range indicative of reduced bone turnover. E2 increased during reproductive life but the lower values subsequently recorded were still in the physiological range, strongly suggesting a protective role of this steroid on bone remodeling. PTH followed a similar profile to E2, but the significance of this after completion of growth remains unclear. CONCLUSIONS Mechanisms governing skeletal growth in the female rat appear similar to those in humans. Bone progression and attainment of peak bone mass are under simultaneous control of rGH, IGF-I and calciotropic hormones and are modulated by E2. This steroid seems to protect the skeleton from resorption before senescence whereas the role of PTH in this context remains uncertain.
Resumo:
Ageing societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the hierarchical organization of bone. Here, we investigate the mechanical response under monotonic and cyclic compression of both single osteonal lamellae and macroscopic samples containing numerous osteons. Micropillar compression tests in a scanning electron microscope, microindentation and macroscopic compression tests were performed on dry ovine bone to identify the elastic modulus, yield stress, plastic deformation, damage accumulation and failure mechanisms. We found that isolated lamellae exhibit a plastic behaviour, with higher yield stress and ductility but no damage. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behaviour of bone at the microscale to a quasi-brittle response driven by the growth of cracks along interfaces or in the vicinity of pores at the macroscale.
Resumo:
A method for the culturing and propagation of ovine bone marrow-derived macrophages (BMM) in vitro is described. Bone marrow cells from sterna of freshly slaughtered sheep were cultured in hydrophobic (teflon foil) bags in the presence of high serum concentrations (20% autologous serum and 20% fetal calf serum). During an 18 day culture period in the absence of added conditioned medium, and without medium change, a strong enrichment of mononuclear phagocytes was achieved. Whereas the number of macrophages increased four to fivefold during this time, granulocytes, lymphoid cells, stem cells and undifferentiated progenitor cells were reduced to less than 3% of their numbers at Day 0. This resulted in BMM populations of 94 +/- 3% purity. These cells had morphological and histochemical characteristics of differentiated macrophages, and they performed functions similar to those of non-activated, unprimed human monocyte-derived macrophages. Thus, they avidly ingested erythrocytes coated with IgG of heterologous or homologous origin. They expressed a modest level of procoagulant activity, but upon triggering with lipopolysaccharide (LPS), a marked increase in cell-associated procoagulant activity was observed. LPS triggering promoted the secretion of interleukin-1, as evidenced by measurement of murine thymocyte costimulatory activity, and transforming growth factor-beta. Using the mouse L929 cell cytotoxicity assay as an indication of tumor necrosis factor (TNF) activity, no TNF activity was detected in the same supernatants, a result possibly due to species restriction. BMM generated low levels of O2- upon triggering with phorbol 12-myristate 13-acetate (PMA). On the other hand, no O2- production was observed upon stimulation with zymosan opsonized with ovine or human serum. Using luminol-enhanced chemiluminescence (CL) as a more sensitive indicator of an oxidative burst, both PMA or zymosan were able to trigger CL, but the response was subject to partial inhibition by sodium azide, an inhibitor of myeloperoxidase. This points to non-macrophage cells contributing also to the CL response, and is consistent with the view that unprimed BMM elicit a low oxidative burst upon triggering with strong inducers of a burst. Our functional characterization now allows us to apply priming and activation protocols and to relate their effect to functional alterations.
Resumo:
An in vitro system allowing the culture of ovine bone marrow-derived macrophages (BMMs) is described. Bone marrow (BM) cells from the sternum of 4- to 9-month-old sheep were cultured in liquid suspension in hydrophobic bags with medium containing 20% autologous serum and 20% fetal calf serum (FCS). Cells with macrophage characteristics were positively selected and increased four- to five-fold between day (d) 0 and d18. Granulocytes and cells of lymphoid appearance including progenitor cells were negatively selected and were diminished 50-fold during this 18-d culture. The addition of macrophage colony-stimulating factor (M-CSF)-containing supernatants to liquid cultures did not significantly improve the yield of BMM in 18-d cultures. In contrast, cell survival at d6 and macrophage cell yield at d18 depended on the concentration and source of serum in the culture medium. FCS and 1:1 mixtures of FCS and autologous serum were superior to autologous serum alone. Analysis of growth requirements of ovine BMMs suggested that they are under more complex growth control than their murine counterparts. In an [3H]thymidine incorporation assay with BM cells collected at different times of culture, d3 or d4 BM cells responded to human recombinant M-CSF, human recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF), bovine GM-CSF, murine M-CSF or murine M-CSF-containing supernatants, and bovine interleukin 1 beta (IL-1 beta) in decreasing order of magnitude. Likewise, pure murine BMM populations harvested at d6 responded to homologous GM-CSF, IL-3, and human or murine M-CSF. FCS did not stimulate the proliferation of murine BMMs (d6) and of ovine BM cells (d3 or d4). In contrast, ovine BM cells harvested at d12 responded to FCS by proliferation in a dose-dependent manner but failed to proliferate in the presence of human or murine M-CSF or M-CSF-containing supernatants of mouse and sheep fibroblasts containing mouse macrophage growth-promoting activity. Likewise, various cytokine-containing supernatants and recombinant cytokines (murine IL-3, murine and human GM-CSF, murine and bovine IL-1 beta) did not promote proliferation of ovine d12 BM cells to an extent greater than that achieved with 15% FCS alone. Thus, ovine BMM proliferation is under the control of at least two factors acting in sequence, M-CSF and an unidentified factor contained in FCS. The ovine BMM culture system may provide a model for the analysis of myelomonocytopoiesis in vitro.
Resumo:
Aging societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the bone hierarchical organization. A good understanding has been reached for elastic properties on several length scales, but up to now there is a lack of reliable postyield data on the lower length scales. In order to be able to describe the behavior of bone at the microscale, an anisotropic elastic-viscoplastic damage model was developed using an eccentric generalized Hill criterion and nonlinear isotropic hardening. The model was implemented as a user subroutine in Abaqus and verified using single element tests. A FE simulation of microindentation in lamellar bone was finally performed show-ing that the new constitutive model can capture the main characteristics of the indentation response of bone. As the generalized Hill criterion is limited to elliptical and cylindrical yield surfaces and the correct shape for bone is not known, a new yield surface was developed that takes any convex quadratic shape. The main advantage is that in the case of material identification the shape of the yield surface does not have to be anticipated but a minimization results in the optimal shape among all convex quadrics. The generality of the formulation was demonstrated by showing its degeneration to classical yield surfaces. Also, existing yield criteria for bone at multiple length scales were converted to the quadric formulation. Then, a computational study to determine the influence of yield surface shape and damage on the in-dentation response of bone using spherical and conical tips was performed. The constitutive model was adapted to the quadric criterion and yield surface shape and critical damage were varied. They were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic to total work ratio were found to be very well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not a significant fac-tor, while for spherical tips damage was insignificant. All inverse methods based on microindentation suffer from a lack of uniqueness of the found material properties in the case of nonlinear material behavior. Therefore, monotonic and cyclic micropillar com-pression tests in a scanning electron microscope allowing a straightforward interpretation comple-mented by microindentation and macroscopic uniaxial compression tests were performed on dry ovine bone to identify modulus, yield stress, plastic deformation, damage accumulation and failure mecha-nisms. While the elastic properties were highly consistent, the postyield deformation and failure mech-anisms differed between the two length scales. A majority of the micropillars showed a ductile behavior with strain hardening until failure by localization in a slip plane, while the macroscopic samples failed in a quasi-brittle fashion with microcracks coalescing into macroscopic failure surfaces. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behavior of bone at the microscale to a quasi-brittle response driven by the growth of preexisting cracks along interfaces or in the vicinity of pores at the macroscale. Subsequently, a study was undertaken to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topography measured by AFM. Statistical shape modeling of the residual imprint allowed to define a mean shape and describe the variability with 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was highly consistent and free of any pile up. A few of the topological parameters, in particular depth, showed significant correlations to variations in mechanical properties, but the cor-relations were not very strong or consistent. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small de-viations from the ideal case. As the uniaxial properties measured by micropillar compression are in conflict with the current literature on bone indentation, another dissipative mechanism has to be present. The elastic-viscoplastic damage model was therefore extended to viscoelasticity. The viscoelastic properties were identified from macroscopic experiments, while the quasistatic postelastic properties were extracted from micropillar data. It was found that viscoelasticity governed by macroscale properties has very little influence on the indentation curve and results in a clear underestimation of the creep deformation. Adding viscoplasticity leads to increased creep, but hardness is still highly overestimated. It was possible to obtain a reasonable fit with experimental indentation curves for both Berkovich and spherical indenta-tion when abandoning the assumption of shear strength being governed by an isotropy condition. These results remain to be verified by independent tests probing the micromechanical strength prop-erties in tension and shear. In conclusion, in this thesis several tools were developed to describe the complex behavior of bone on the microscale and experiments were performed to identify its material properties. Micropillar com-pression highlighted a size effect in bone due to the presence of preexisting cracks and pores or inter-faces like cement lines. It was possible to get a reasonable fit between experimental indentation curves using different tips and simulations using the constitutive model and uniaxial properties measured by micropillar compression. Additional experimental work is necessary to identify the exact nature of the size effect and the mechanical role of interfaces in bone. Deciphering the micromechanical behavior of lamellar bone and its evolution with age, disease and treatment and its failure mechanisms on several length scales will help preventing fractures in the elderly in the future.
Resumo:
PURPOSE Autografts are considered to support bone regeneration. Paracrine factors released from cortical bone might contribute to the overall process of graft consolidation. The aim of this study was to characterize the paracrine factors by means of proteomic analysis. MATERIALS AND METHODS Bone-conditioned medium (BCM) was prepared from fresh bone chips of porcine mandibles and subjected to proteomic analysis. Proteins were categorized and clustered using the bioinformatic tools UNIPROT and PANTHER, respectively. RESULTS Proteomic analysis showed that BCM contains more than 150 proteins, of which 43 were categorized into "secreted" and "extracellular matrix." Growth factors that are not only detectable in BCM, but potentially also target cellular processes involved in bone regeneration, eg, pleiotrophin, galectin-1, transforming growth factor beta (TGF-β)-induced gene (TGFBI), lactotransferrin, insulin-like growth factor (IGF)-binding protein 5, latency-associated peptide forming a complex with TGF-β1, and TGF-β2, were discovered. CONCLUSION The present results demonstrate that cortical bone chips release a large spectrum of proteins with the possibility of modulating cellular aspects of bone regeneration. The data provide the basis for future studies to understand how these paracrine factors may contribute to the complex process of graft consolidation.
Resumo:
Current research indicates that exogenous stem cells may accelerate reparative processes in joint disease but, no previous studies have evaluated whether bone marrow cells (BMCs) target the injured cranial cruciate ligament (CCL) in dogs. The objective of this study was to investigate engraftment of BMCs following intra-articular injection in dogs with spontaneous CCL injury. Autologous PKH26-labelled BMCs were injected into the stifle joint of eight client-owned dogs with CCL rupture. The effects of PKH26 staining on cell viability and PKH26 fluorescence intensity were analysed in vitro using a MTT assay and flow cytometry. Labelled BMCs in injured CCL tissue were identified using fluorescence microscopy of biopsies harvested 3 and 13 days after intra-articular BMC injection. The intensity of PKH26 fluorescence declines with cell division but was still detectable after 16 days. Labelling with PKH26 had no detectable effect on cell viability or proliferation. Only rare PKH26-positive cells were present in biopsies of the injured CCL in 3/7 dogs and in synovial fluid in 1/7 dogs. No differences in transforming growth factor-beta1, and interleukin-6 before and after BMC treatment were found and no clinical complications were noted during a 1 year follow-up period. In conclusion, BMCs were shown to engraft to the injured CCL in dogs when injected into the articular cavity. Intra-articular application of PKH26-labelled cultured mesenchymal stem cells is likely to result in higher numbers of engrafted cells that can be tracked using this method in a clinical setting.