100 resultados para antineutrophil cytoplasmic antibodies
Resumo:
The tumour suppressor p53 is commonly detected in tissues of companion animals by means of antibodies raised against the human protein. The following three-step procedure was devised to test the suitability of such antibodies for immunohistochemistry on canine tissues. (1) Western blot and immunohistochemical analyses on bacterially expressed recombinant canine protein to assess human-to-canine cross-reactivity. (2) Immunohistochemistry of cultured, UVB-irradiated canine keratinocytes to evaluate suitability for detection of endogenous p53. (3) Immunohistochemistry on tissue arrays to further substantiate suitability of the antibodies on a panel of normal and neoplastic human and canine tissues. Five of six antibodies cross-reacted with recombinant canine p53. Three of these (PAb122, PAb240, CM-1) also immunolabelled stabilized wild type p53 in cell cultures and elicited a consistent, characteristic labelling pattern in a subset of tumours. However, two alternative batches of polyclonal antibody CM-1 failed to detect p53 in cell cultures, while showing a characteristic labelling pattern of a completely different subset of tumours and unspecific labelling of normal tissues. The test system described is well suited to the selection of antibodies for immunohistochemical p53 detection. The results emphasize the need to include appropriate controls, especially for polyclonal antibodies.
Resumo:
NDRG1 is a hypoxia-inducible protein, whose modulated expression is associated with the progression of human cancers. Here, we reveal that NDRG1 is markedly upregulated in the cytoplasm and on the membrane in human hepatocellular carcinoma (HCC). We demonstrate further that hypoxic stress increases the cytoplasmic expression of NDRG1 in vitro, but does not result in its localization on the plasma membrane. However, grown within an HCC-xenograft in vivo, cells express NDRG1 in the cytoplasm and on the plasma membrane. In conclusion, hypoxia is a potent inducer of NDRG1 in HCCs, albeit requiring additional stimuli within the tumour microenvironment for its recruitment to the membrane.
Resumo:
OBJECTIVES: In patients with a clinically isolated syndrome (CIS), the time interval to convert to clinically definite multiple sclerosis (CDMS) is highly variable. Individual and geographical prognostic factors remain to be determined. Whether anti-myelin antibodies may predict the risk of conversion to CDMS in Swiss CIS patients of the canton Berne was the subject of the study. METHODS: Anti-myelin oligodendrocyte glycoprotein and anti-myelin basic protein antibodies were determined prospectively in patients admitted to our department. RESULTS: After a mean follow-up of 12 months, none of nine antibody-negative, but 22 of 30 antibody-positive patients had progressed to CDMS. Beta-Interferon treatment delayed the time to conversion from a mean of 7.4 to 10.9 months. CONCLUSIONS: In a Swiss cohort, antibody-negative CIS patients have a favorable short-term prognosis, and antibody-positive patients benefit from early treatment.
Resumo:
Moraxella catarrhalis is a major mucosal pathogen of the human respiratory tract, but the mucosal immune response directed against surface components of this organism has not been characterized in detail. The aim of this study was to investigate the salivary immunoglobulin A (IgA) response toward outer membrane proteins (OMP) of M. catarrhalis in healthy adults, the group of individuals least likely to be colonized and thus most likely to display mucosal immunity. Unstimulated saliva samples collected from 14 healthy adult volunteers were subjected to IgA immunoblot analysis with OMP preparations of M. catarrhalis strain O35E. Immunoblot analysis revealed a consistent pattern of IgA reactivity, with the appearance of five major bands located at >250, 200, 120, 80, and 60 kDa. Eleven (79%) of 14 saliva samples elicited reactivity to all five bands. Immunoblot analysis with a set of isogenic knockout mutants lacking the expression of individual OMP was used to determine the identities of OMP giving rise to IgA bands. Human saliva was shown consistently to exhibit IgA-binding activity for oligomeric UspA2 (>250 kDa), hemagglutinin (200 kDa), monomeric UspA1 (120 kDa), transferrin-binding protein B (TbpB), monomeric UspA2, CopB, and presumably OMP CD. TbpB, oligomeric UspA2, and CopB formed a cluster of bands at about 80 kDa. These data indicate that the human salivary IgA response is directed consistently against a small number of major OMP, some of which are presently considered vaccine candidates. The functional properties of these mucosal antibodies remain to be elucidated.
Resumo:
Therapeutic intravenous immunoglobulin (IVIg) preparations contain antibodies reflecting the cumulative antigen experience of the donor population. IVIg contains variable amounts of monomeric and dimeric IgG, but there is little information available on their comparative antibody specificities. We have isolated highly purified fractions of monomeric and dimeric IgG by size-exclusion chromatography. Following treatment of all fractions at pH4, analyses by immunodot and immunocytology on human cell lines showed a preferential recognition of autoantigens in the dimeric IgG fraction. Investigation of the HEp-2 cytoplasmic proteome by 2D-PAGE, Western blot, and subsequent identification of IVIg reactive spots by mass spectrometry (LC-MS/MS) showed that IVIg recognized only a restricted set of the total proteins. Similar experiments showed that more antigens were recognized by the dimeric IgG fraction, especially when the dissociated dimer fraction was used, as compared to its monomeric counterpart. These observations are consistent with idiotype-anti-idiotype masking of auto-specific Abs in the dimeric fraction of IVIg.
Resumo:
Cytoplasmic dynein performs multiple cellular tasks but its regulation remains unclear. The dynein heavy chain has a N-terminal stem that binds to other subunits and a C-terminal motor unit that contains six AAA (ATPase associated with cellular activities) domains and a microtubule-binding site located between AAA4 and AAA5. In Aspergillus nidulans, NUDF (a LIS1 homolog) functions in the dynein pathway, and two nudF6 partial suppressors were mapped to the nudA dynein heavy chain locus. Here we identified these two mutations. The nudAL1098F mutation resides in the stem region, and nudAR3086C is in the end of AAA4. These mutations partially suppress the phenotype of nudF deletion but do not suppress the phenotype exhibited by mutants of dynein intermediate chain and Arp1. Surprisingly, the stronger DeltanudF suppressor, nudAR3086C, causes an obvious decrease in the basal level of dynein's ATPase activity and an increase in dynein's distribution along microtubules. Thus, suppression of the DeltanudF phenotype may result from mechanisms other than simply the enhancement of dynein's ATPase activity. The fact that a mutation in the end of AAA4 negatively regulates dynein's ATPase activity but partially compensates for NUDF loss indicates the importance of the AAA4 domain in dynein regulation in vivo.
Resumo:
Cell death induction by apoptosis is an important process in the maintenance of tissue homeostasis as well as tissue destruction during various pathological processes. Consequently, detection of apoptotic cells in situ represents an important technique to assess the extent and impact of cell death in the respective tissue. While scoring of apoptosis by histological assessment of apoptotic cells is still a widely used method, it is likely biased by sensitivity problems and observed-based variations. The availability of caspase-mediated neo-epitope-specific antibodies offers new tools for the detection of apoptosis in situ. Here, we discuss the use of immunohistochemical detection of cleaved caspase 3 and lamin A for the assessment of apoptotic cells in paraffin-embedded liver tissue. Furthermore, we evaluate the effect of tissue pretreatment and antigen retrieval on the sensitivity of apoptosis detection, background staining and maintenance of tissue morphology.
Resumo:
Natural antibodies (NA) specific for infectious pathogens are found at low titer (usually <1:40) in the serum of healthy, non-immunized, individuals. Therefore, NA are part of the first line of defence against blood borne microorganisms. They directly neutralize viral infections or lyse pathogens by activating the complement cascade. In addition, recent studies highlighted their role in the pooling of infectious pathogens and other antigens to the spleen. This prevents infection of vital target organs and enhances the induction of adaptive immune responses. Specific T and B-cell responses are exclusively induced in highly organized secondary lymphoid organs including lymph nodes and the spleen. As a consequence, mice with disrupted microorganisation of lymphoid organs have defective adaptive immunity. In addition, some pathogens including lymphocytic choriomeningitis virus (LCMV), Leishmania and HIV developed strategies to destroy the splenic architecture in order to induce an acquired immunosuppression and to establish persistent infection. NA antibodies enhance early neutralizing antibodies in the absence of T help mainly by targeting antigen to the splenic marginal zone. In addition, by activating the complement cascade, NA enhance T cell and T-cell dependent B-cell responses. Therefore, natural antibodies are an important link between innate and adaptive immunity.
Resumo:
Previous studies on the effect of glycosylation on the elimination rate of antibodies have produced conflicting results. Here, we performed pharmacokinetic studies in mice with two preparations of a monoclonal IgG1 antibody enriched for complex type or high mannose type oligosaccharides at the Fc glycosylation site. No significant difference in the serum half-life was found between the two antibody glycoforms, nor was any difference observed in the serum half-lives of different complex type glycoforms. To evaluate the influence of glycosylation within the variable domain, a second monoclonal antibody, glycosylated in both the Fc and Fv domains, was separated into fractions containing different amounts of Fv-associated sialic acid and administered to mice. Again, no significant difference was found in the clearance rates of variants carrying different amounts of Fv-associated sialic acid or lacking Fv-glycosylation. These results suggest that glycosylation has little or no impact on the pharmacokinetic behavior of these two monoclonal antibodies in mice.
Resumo:
Inhibitory anti-muscarinic receptor type 3 (M3R) antibodies may contribute to the pathogenesis of Sjögren's syndrome (SS), and putative anti-M3R blocking antibodies in intravenous immunoglobulin (IVIg) have been suggested as a rationale for treatment with IVIg. We investigated the presence of subtype-specific anti-MR autoantibodies in healthy donor and SS sera using MR-transfected whole-cell binding assays as well as M1R and M3R peptide ELISAs. Control antibodies against the second extracellular loop of the M3R, a suggested target epitope, were induced in rabbits and found to be cross-reactive on the peptides M3R and M1R. The rabbit antibodies had neither an agonistic nor an antagonistic effect on M3R-dependent ERK1/2 signalling. Only one primary SS (out of 5 primary SS, 2 secondary SS and 5 control sera) reacted strongly with M3R transfected cells. The same SS serum also reacted strongly with M1R and M2R transfectants, as well as M1R and two different M3R peptides. Strong binding to M1R and low-level activities against M3R peptides were observed both in SS and control sera. IVIg showed a strong reactivity against all three peptides, especially M1R. Our results indicate that certain SS individuals may have antibodies against M1R, M2R and M3R. Our results also suggest that neither the linear M3R peptide nor M3R transfectants represent suitable tools for discrimination of pathogenic from natural autoantibodies in SS.
Resumo:
Maternal antibodies protect newborns whilst they are immunologically immature. This study shows that maternal antibodies can also shape the B cell repertoire of the offspring long after the maternal antibodies themselves become undetectable. V(H)DJ(H) gene-targeted (VI10) mice expressing a heavy chain specific for vesicular stomatitis virus (VSV) produce a 20-fold increased spontaneous titer of VSV-neutralizing antibodies. When transferred from mother to offspring, these antibodies prevented accumulation of Ag-specific transitional type 2 and marginal zone B cells with an activated phenotype and favored selection to the B cell follicles. This effect was B cell-intrinsic and lasted up to adulthood. The pups nursed by mothers producing specific antibodies developed higher endogenous antibody titers of this specificity which perpetuated the effects of specific B cell selection into the mature follicular compartment, presumably by blocking auto-Ag-dependent development of transitional type 2 B cells in the spleen. This repertoire change was functional, as following infection of adult mice with VSV, those pups that had received specific maternal antibodies as neonates had increased pre-immune titers and mounted strong early IgG neutralizing antibodies.
Resumo:
Anti-helminth immunity involves CD4+ T cells, yet the precise effector mechanisms responsible for parasite killing or expulsion remain elusive. We now report an essential role for antibodies in mediating immunity against the enteric helminth Heligmosomoides polygyrus (Hp), a natural murine parasite that establishes chronic infection. Polyclonal IgG antibodies, present in naive mice and produced following Hp infection, functioned to limit egg production by adult parasites. Comparatively, affinity-matured parasite-specific IgG and IgA antibodies that developed only after multiple infections were required to prevent adult worm development. These data reveal complementary roles for polyclonal and affinity-matured parasite-specific antibodies in preventing enteric helminth infection by limiting parasite fecundity and providing immune protection against reinfection, respectively. We propose that parasite-induced polyclonal antibodies play a dual role, whereby the parasite is allowed to establish chronicity, while parasite load and spread are limited, likely reflecting the long coevolution of helminth parasites with their hosts.
Resumo:
AIM: To test whether humoral immune reaction against mycobacteria may play a role in anti-Saccharomyces cerevisiae antibodies (ASCA) generation in Crohn's disease (CD) and/or whether it correlates with clinical subtypes. METHODS: The dominant ASCA epitope was detected by Galanthus nivalis lectin (GNL)-binding assay. ASCA and IgG against mycobacterial lysates (M avium, M smegmatis, M chelonae, M bovis BCG, M avium ssp. paratuberculosis (MAP)] or purified lipoarabinomannans (LAM) were detected by ELISA. ASCA and anti-mycobacterial antibodies were affinity purified to assess cross-reactivities. Anti-mycobacterial IgG were induced by BCG-infection of mice. RESULTS: GNL bound to different extents to mycobacterial lysates, abundantly to purified mannose-capped (Man) LAM from M tuberculosis, but not to uncapped LAM from M smegmatis. Fifteen to 45% of CD patients but only 0%-6% of controls were seropositive against different mycobacterial antigens. Anti-mycobacterial IgG correlated with ASCA (r = 0.37-0.64; P = 0.003-P < 0.001). ASCA-positivity and deficiency for mannan-binding lectin synergistically associated with anti-mycobacterial IgG. In some patients, anti-mycobacterial antibodies represent cross-reactive ASCA. Vice-versa, the predominant fraction of ASCA did not cross-react with mycobacteria. Finally, fistulizing disease associated with antibodies against M avium, M smegmatis and MAP (P = 0.024, 0.004 and 0.045, respectively). CONCLUSION: Similar to ASCA, seroreactivity against mycobacteria may define CD patients with complicated disease and a predisposition for immune responses against ubiquitous antigens. While in some patients anti-mycobacterial antibodies strongly cross-react with yeast mannan; these cross-reactive antibodies only represent a minor fraction of total ASCA. Thus, mycobacterial infection unlikely plays a role in ASCA induction.