48 resultados para Wilms-tumor Gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gastroenteropancreatic neuroendocrine tumors (NETs) often present as liver metastasis from a carcinoma of unknown primary. We recently showed that primary NETs from the pancreas, small intestine and stomach as well as their respective liver metastases differ from each other by the expression profile of the three genes CD302, PPWD1 and ABHB14B. The gene and protein expression of CD302, PPWD1, and ABHB14B was studied in abdominal NET metastases to identify the site of the respective primary tumors. Cryopreserved tissue from NET metastases collected in different institutions (group A: 29, group B: 50, group C: 132 specimens) were examined by comparative genomic hybridization (Agilent 105 K), gene expression analysis (Agilent 44 K) (groups A and B) and immunohistochemistry (group C). The data were blindly evaluated, i.e. without knowing the site of the primary. Gene expression analysis correctly revealed the primary in the ileum in 94 % of the cases of group A and in 58 % of group B. A pancreatic primary was predicted in 83 % (group A) and 20 % (group B), respectively. The combined sensitivity of group A and B was 75 % for ileal NETs and 38 % for pancreatic NETs. Immunohistochemical analysis of group C revealed an overall sensitivity of 80 %. Gene and protein expression analysis of CD302 and PPWD1 in NET metastases correctly identifies the primary in the pancreas or the ileum in 80 % of the cases, provided that the tissue is well preserved. Immunohistochemical profiling revealed CD302 as the best marker for ileal and PPWD1 for pancreatic detection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human DMTF1 (DMP1) transcription factor, a DNA binding protein that interacts with cyclin D, is a positive regulator of the p14ARF (ARF) tumor suppressor. Our earlier studies have shown that three differentially spliced human DMP1 mRNAs, α, β and γ, arise from the human gene. We now show that DMP1α, β and γ isoforms differentially regulate ARF expression and promote distinct cellular functions. In contrast to DMP1α, DMP1β and γ did not activate the ARF promoter, whereas only β resulted in a dose-dependent inhibition of DMP1α-induced transactivation of the ARF promoter. Ectopic expression of DMP1β reduced endogenous ARF mRNA levels in human fibroblasts. The DMP1β- and γ-isoforms share domains necessary for the inhibitory function of the β-isoform. That DMP1β may interact with DMP1α to antagonize its function was shown in DNA binding assays and in cells by the close proximity of DMP1α/β in the nucleus. Cells stably expressing DMP1β, as well as shRNA targeting all DMP1 isoforms, disrupted cellular growth arrest induced by serum deprivation or in PMA-derived macrophages in the presence or absence of cellular p53. DMP1 mRNA levels in acute myeloid leukemia samples, as compared to granulocytes, were reduced. Treatment of acute promyelocytic leukemia patient samples with all-trans retinoic acid promoted differentiation to granulocytes and restored DMP1 transcripts to normal granulocyte levels. Our findings imply that DMP1α- and β-ratios are tightly regulated in hematopoietic cells and DMP1β antagonizes DMP1α transcriptional regulation of ARF resulting in the alteration of cellular control with a gain in proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXT 3β-hydroxysteroid dehydrogenase deficiency (3βHSD) is a rare disorder of sexual development and steroidogenesis. There are two isozymes of 3βHSD, HSD3B1 and HSD3B2. Human mutations are known for the HSD3B2 gene which is expressed in the gonads and the adrenals. Little is known about testis histology, fertility and malignancy risk. OBJECTIVE To describe the molecular genetics, the steroid biochemistry, the (immuno-)histochemistry and the clinical implications of a loss-of-function HSD3B2 mutation. METHODS Biochemical, genetic and immunohistochemical investigations on human biomaterials. RESULTS A 46,XY boy presented at birth with severe undervirilization of the external genitalia. Steroid profiling showed low steroid production for mineralocorticoids, glucocorticoids and sex steroids with typical precursor metabolites for HSD3B2 deficiency. The genetic analysis of the HSD3B2 gene revealed a homozygous c.687del27 deletion. At pubertal age, he showed some virilization of the external genitalia and some sex steroid metabolites appeared likely through conversion of precursors secreted by the testis and converted by unaffected HSD3B1 in peripheral tissues. However, he also developed enlarged breasts through production of estrogens in the periphery. Testis histology in late puberty revealed primarily a Sertoli-cell-only pattern and only few tubules with arrested spermatogenesis, presence of few Leydig cells in stroma, but no neoplastic changes. CONCLUSIONS The testis with HSD3B2 deficiency due to the c.687del27 deletion does not express the defective protein. This patient is unlikely to be fertile and his risk for gonadal malignancy is low. Further studies are needed to obtain firm knowledge on malignancy risk for gonads harboring defects of androgen biosynthesis.