56 resultados para Way bills


Relevância:

20.00% 20.00%

Publicador:

Resumo:

While there is currently burgeoning interest in the application of the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) to genome editing, it is perhaps not widely appreciated that this is the second discovery of a small RNA (sRNA)-targeted DNA-deletion system. The first sRNA-targeted DNA-deletion system to be discovered, which we call IES/Ias (internal eliminated sequence/IES-associated genes) to contrast with CRISPR/Cas, is found in ciliates, and, like CRISPR/Cas, is thought to serve as a form of immune defense against invasive DNAs. The manner in which the ciliate IES/Ias system functions is distinct from that of the CRISPR/Cas system in archaea and bacteria, and arose independently through a synthesis of RNA interference-derived and DNA-specific molecular components. Despite the major differences between CRISPR/Cas and IES/Ias, both systems face similar conceptual challenges in targeting invasive DNAs. In this review, we focus on the discovery, effects, function, and evolutionary consequences of the IES/Ias system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper analyzes Karl Popper’s and John Eccles’ account of mind-matter interaction and compares their use of the concept of downward causation with other more recent accounts of it, especially those of Nancey Murphy and George Ellis. The argument includes John Polkinghorne’s take on Divine action, as it provides an interesting version of downward mind/matter-interaction. It will be argued that while downward causation is a speculative concept, it nevertheless remains the best approximation to a scientific perspective on mind/matter interaction that we can obtain. As a result, Popper’s and Eccles’ account seems to be more interesting in these regards than usually assumed, and should not continue to be overlooked in the debate.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND AIMS Inflammatory bowel diseases (IBDs) may impair quality of life (QoL) in paediatric patients. We aimed to evaluate in a nationwide cohort whether patients experience QoL in a different way when compared with their parents. METHODS Sociodemographic and psychosocial characteristics were prospectively acquired from paediatric patients and their parents included in the Swiss IBD Cohort Study. Disease activity was evaluated by the Paediatric Crohn's Disease Activity Index (PCDAI) and the Paediatric Ulcerative Colitis Activity Index (PUCAI). We assessed QoL using the KIDSCREEN questionnaire. The QoL domains were analysed and compared between children and parents according to type of disease, parents' age, origin, education and marital status. RESULTS We included 110 children and parents (59 Crohn's disease [CD], 45 ulcerative colitis [UC], 6 IBD unclassified [IBDU]). There was no significant difference in QoL between CD and UC/IBDU, whether the disease was active or in remission. Parents perceived overall QoL, as well as 'mood', 'family' and 'friends' domains, lower than the children themselves, independently of their place of birth and education. However, better concordance was found on 'school performance' and 'physical activity' domains. Marital status and age of parents significantly influenced the evaluation of QoL. Mothers and fathers being married or cohabiting perceived significantly lower mood, family and friends domains than their children, whereas mothers living alone had a lower perception of the friends domain; fathers living alone had a lower perception of family and mood subscores. CONCLUSION Parents of Swiss paediatric IBD patients significantly underestimate overall QoL and domains of QoL of their children independently of origin and education.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

mrtab tabulates multiple responses which are held as a set of indicator variables or as a set of polytomous response variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Researchers evaluating angiomodulating compounds as a part of scientific projects or pre-clinical studies are often confronted with limitations of applied animal models. The rough and insufficient early-stage compound assessment without reliable quantification of the vascular response counts, at least partially, to the low transition rate to clinics. OBJECTIVE To establish an advanced, rapid and cost-effective angiogenesis assay for the precise and sensitive assessment of angiomodulating compounds using zebrafish caudal fin regeneration. It should provide information regarding the angiogenic mechanisms involved and should include qualitative and quantitative data of drug effects in a non-biased and time-efficient way. APPROACH & RESULTS Basic vascular parameters (total regenerated area, vascular projection area, contour length, vessel area density) were extracted from in vivo fluorescence microscopy images using a stereological approach. Skeletonization of the vasculature by our custom-made software Skelios provided additional parameters including "graph energy" and "distance to farthest node". The latter gave important insights into the complexity, connectivity and maturation status of the regenerating vascular network. The employment of a reference point (vascular parameters prior amputation) is unique for the model and crucial for a proper assessment. Additionally, the assay provides exceptional possibilities for correlative microscopy by combining in vivo-imaging and morphological investigation of the area of interest. The 3-way correlative microscopy links the dynamic changes in vivo with their structural substrate at the subcellular level. CONCLUSIONS The improved zebrafish fin regeneration model with advanced quantitative analysis and optional 3-way correlative morphology is a promising in vivo angiogenesis assay, well-suitable for basic research and preclinical investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy harvesting devices are widely discussed as an alternative power source for todays active implantable medical devices. Repeated battery replacement procedures can be avoided by extending the implants life span, which is the goal of energy harvesting concepts. This reduces the risk of complications for the patient and may even reduce device size. The continuous and powerful contractions of a human heart ideally qualify as a battery substitute. In particular, devices in close proximity to the heart such as pacemakers, defibrillators or bio signal (ECG) recorders would benefit from this alternative energy source. The clockwork of an automatic wristwatch was used to transform the hearts kinetic energy into electrical energy. In order to qualify as a continuous energy supply for the consuming device, the mechanism needs to demonstrate its harvesting capability under various conditions. Several in-vivo recorded heart motions were used as input of a mathematical model to optimize the clockworks original conversion efficiency with respect to myocardial contractions. The resulting design was implemented and tested during in-vitro and in-vivo experiments, which demonstrated the superior sensitivity of the new design for all tested heart motions.