73 resultados para Vitamin D binding protein
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed RNA-binding protein of the hnRNP family, that has been discovered as fused to transcription factors, through chromosomal translocations, in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis (ALS) [1]. To date, FUS/TLS has been implicated in a variety of cellular processes such as gene expression control, transcriptional regulation, pre-mRNA splicing and miRNA processing [2]. In addition, some evidences link FUS/TLS to genome stability control and DNA damage response. In fact, mice lacking FUS/TLS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and in response to double-strand breaks, FUS/TLS gets phosphorylated by the protein kinase ATM [3,4,5]. Furthermore, the inducible depletion of FUS/TLS in a neuroblastoma cell line (SH-SY5Y FUS/TLS TET-off iKD) subjected to genotoxic stress (IR) resulted in an increased phosphorylation of γH2AX respect to control cells, suggesting an higher activation of the DNA damage response. The study aims to investigate the specific role of FUS/TLS in DNA damage response through the characterization of the proteomic profile of SH-SY5Y FUS/TLS iKD cells subjected to DNA damage stress, by mass spectrometry-based quantitative proteomics (e.g. SILAC). Preliminary results of mass spectrometric identification of FUS/TLS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS/TLS protein, highlighted the interactions with several proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS/TLS is involved in this pathway, even thou its exact role still need to be addressed.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma) is a ubiquitously expressed protein of the hnRNP family, that has been discovered as fused to transcription factors in several human sarcomas and found in protein aggregates in neurons of patients with an inherited form of Amyotrophic Lateral Sclerosis [Vance C. et al., 2009]. FUS is a 53 kDa nuclear protein that contains structural domains, such as a RNA Recognition Motif (RRM) and a zinc finger motif, that give to FUS the ability to bind to both RNA and DNA sequences. It has been implicated in a variety of cellular processes, such as pre-mRNA splicing, miRNA processing, gene expression control and transcriptional regulation [Fiesel FC. and Kahle PJ., 2011]. Moreover, some evidences link FUS to genome stability control and DNA damage response: mice lacking FUS are hypersensitive to ionizing radiation (IR) and show high levels of chromosome instability and, in response to double-strand breaks, FUS is phosphorylated by the protein kinase ATM [Kuroda M. et al., 2000; Hicks GG. et al., 2000; Gardiner M. et al., 2008]. Furthermore, preliminary results of mass spectrometric identification of FUS interacting proteins in HEK293 cells, expressing a recombinant flag-tagged FUS protein, highlighted the interactions with proteins involved in DNA damage response, such as DNA-PK, XRCC-5/-6, and ERCC-6, raising the possibilities that FUS is involved in this pathway, even though its role still needs to be clarified. This study aims to investigate the biological roles of FUS in human cells and in particular the putative role in DNA damage response through the characterization of the proteomic profile of the neuroblastoma cell line SH-SY5Y upon FUS inducible depletion, by a quantitative proteomic approach. The SH-SY5Y cell line that will be used in this study expresses, in presence of tetracycline, a shRNA that targets FUS mRNA, leading to FUS protein depletion (SH-SY5Y FUS iKD cells). To quantify changes in proteins expression levels a SILAC strategy (Stable Isotope Labeling by Amino acids in Cell culture) will be conducted on SH-SY5Y FUS iKD cells and a control SH-SY5Y cell line (that expresses a mock shRNA) and the relative changes in proteins levels will be evaluated after five and seven days upon FUS depletion, by nanoliquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS) and bioinformatics analysis. Preliminary experiments demonstrated that the SH-SY5Y FUS iKD cells, when subjected to genotoxic stress (high dose of IR), upon inducible depletion of FUS, showed a increased phosphorylation of gH2AX with respect to control cells, suggesting an higher activation of the DNA damage response.
Resumo:
FUS/TLS (fused in sarcoma/translocated in liposarcoma), a ubiquitously expressed RNA-binding protein, has been linked to a variety of cellular processes, including RNA metabolism, microRNA biogenesis and DNA repair. However, the precise cellular function of FUS remains unclear. Recently, mutations in the FUS gene have been found in ∼5% of familial Amyotrophic Lateral Sclerosis, a neurodegenerative disorder characterized by the dysfunction and death of motor neurons. Since MEFs and B-lymphocytes derived from FUS knockdown mice display major sensitivity to ionizing radiation and chromosomal aberrations [1,2], we are investigating the effects of DNA damage both in the presence or in the absence of FUS. To this purpose, we have generated a SH-SY5Y human neuroblastoma cell line expressing a doxycycline-induced shRNA targeting FUS, which specifically depletes the protein. We have found that FUS depletion induces an activation of the DNA damage response (DDR). However, treatment with genotoxic agents did not induce any strong changes in ATM (Ataxia Telangiectasia Mutated)-mediated DDR signaling. Interestingly, genotoxic treatment results in changes in the subcellular localization of FUS in normal cells. We are currently exploring on one hand the mechanism by which FUS depletion leads to DNA damage, and on the other the functional significance of FUS relocalization after genotoxic stress.
Resumo:
INTRODUCTION It is recognised that vitamin D status is often inadequate (<50 nmol/l) in epileptic children, mainly because some anticonvulsant drugs induce the enzymes responsible for its metabolism. The purpose of the present study was to address vitamin D status among children and adolescents treated with anticonvulsant drugs and control subjects who reside in southern Switzerland, a high solar radiation region. METHODS Between January and May 2013, total serum 25-hydroxyvitamin D was assessed by liquid chromatography-tandem mass spectrometry in 58 children and adolescents with epilepsy and 29 controls residing in southern Switzerland. Dark-skinned individuals, females wearing dress styles covering practically the whole body and subjects with body mass index ≥85th percentile for age and sex were excluded. RESULTS Concentration of serum 25-hydroxyvitamin D was similar in epilepsy patients (48 [37-62] nmol/l; median and interquartile range) and controls (53 [47-64] nmol/l). An inadequate serum 25-hydroxyvitamin D concentration was common both among patients (55%) and control subjects (34%). Serum 25-hydroxyvitamin D was significantly lower among patients treated with anticonvulsant drugs that induce the metabolism of vitamin D (30 [21-51] nmol/l) than among the remaining patients (51 [40-65] nmol/l) and controls. CONCLUSIONS The present study indicates a relevant tendency towards inadequate vitamin D status among children with and without anticonvulsant drug management who reside in southern Switzerland. This tendency is more prominent in patients treated with anticonvulsant drugs that induce the metabolism of 25-hydroxyvitamin D.
Resumo:
BACKGROUND Low vitamin D is implicated in various chronic pain conditions with, however, inconclusive findings. Vitamin D might play an important role in mechanisms being involved in central processing of evoked pain stimuli but less so for spontaneous clinical pain. OBJECTIVE This study aims to examine the relation between low serum levels of 25-hydroxyvitamin D3 (25-OH D) and mechanical pain sensitivity. DESIGN We studied 174 patients (mean age 48 years, 53% women) with chronic pain. A standardized pain provocation test was applied, and pain intensity was rated on a numerical analogue scale (0-10). The widespread pain index and symptom severity score (including fatigue, waking unrefreshed, and cognitive symptoms) following the 2010 American College of Rheumatology preliminary diagnostic criteria for fibromyalgia were also assessed. Serum 25-OH D levels were measured with a chemiluminescent immunoassay. RESULTS Vitamin deficiency (25-OH D < 50 nmol/L) was present in 71% of chronic pain patients; another 21% had insufficient vitamin D (25-OH D < 75 nmol/L). After adjustment for demographic and clinical variables, there was a mean ± standard error of the mean increase in pain intensity of 0.61 ± 0.25 for each 25 nmol/L decrease in 25-OH D (P = 0.011). Lower 25-OH D levels were also related to greater symptom severity (r = -0.21, P = 0.008) but not to the widespread pain index (P = 0.83) and fibromyalgia (P = 0.51). CONCLUSIONS The findings suggest a role of low vitamin D levels for heightened central sensitivity, particularly augmented pain processing upon mechanical stimulation in chronic pain patients. Vitamin D seems comparably less important for self-reports of spontaneous chronic pain.
Resumo:
TbRRM1 of Trypanosoma brucei is a nucleoprotein that was previously identified in a search for splicing factors in T. brucei. We show that TbRRM1 associates with mRNAs and with the auxiliary splicing factor polypyrimidine tract-binding protein 2, but not with components of the core spliceosome. TbRRM1 also interacts with several retrotransposon hot spot (RHS) proteins and histones. RNA immunoprecipitation of a tagged form of TbRRM1 from procyclic (insect) form trypanosomes identified ca. 1,500 transcripts that were enriched and 3,000 transcripts that were underrepresented compared to cellular mRNA. Enriched transcripts encoded RNA-binding proteins, including TbRRM1 itself, several RHS transcripts, mRNAs with long coding regions, and a high proportion of stage-regulated mRNAs that are more highly expressed in bloodstream forms. Transcripts encoding ribosomal proteins, other factors involved in translation, and procyclic-specific transcripts were underrepresented. Knockdown of TbRRM1 by RNA interference caused widespread changes in mRNA abundance, but these changes did not correlate with the binding of the protein to transcripts, and most splice sites were unchanged, negating a general role for TbRRM1 in splice site selection. When changes in mRNA abundance were mapped across the genome, regions with many downregulated mRNAs were identified. Two regions were analyzed by chromatin immunoprecipitation, both of which exhibited increases in nucleosome occupancy upon TbRRM1 depletion. In addition, subjecting cells to heat shock resulted in translocation of TbRRM1 to the cytoplasm and compaction of chromatin, consistent with a second role for TbRRM1 in modulating chromatin structure. IMPORTANCE: Trypanosoma brucei, the parasite that causes human sleeping sickness, is transmitted by tsetse flies. The parasite progresses through different life cycle stages in its two hosts, altering its pattern of gene expression in the process. In trypanosomes, protein-coding genes are organized as polycistronic units that are processed into monocistronic mRNAs. Since genes in the same unit can be regulated independently of each other, it is believed that gene regulation is essentially posttranscriptional. In this study, we investigated the role of a nuclear RNA-binding protein, TbRRM1, in the insect stage of the parasite. We found that TbRRM1 binds nuclear mRNAs and also affects chromatin status. Reduction of nuclear TbRRM1 by RNA interference or heat shock resulted in chromatin compaction. We propose that TbRRM1 regulates RNA polymerase II-driven gene expression both cotranscriptionally, by facilitating transcription and efficient splicing, and posttranscriptionally, via its interaction with nuclear mRNAs.
Resumo:
As in all metazoans, the replication-dependent histone genes of Caenorhabditis elegans lack introns and contain a short hairpin structure in the 3' untranslated region. This hairpin structure is a key element for post-transcriptional regulation of histone gene expression and determines mRNA 3' end formation, nuclear export, translation and mRNA decay. All these steps contribute to the S-phase-specific expression of the replication-dependent histone genes. The hairpin structure is the binding site for histone hairpin-binding protein that is required for hairpin-dependent regulation. Here, we demonstrate that the C. elegans histone hairpin-binding protein gene is transcribed in dividing cells during embryogenesis and postembryonic development. Depletion of histone hairpin-binding protein (HBP) function in early embryos using RNA-mediated interference leads to an embryonic-lethal phenotype brought about by defects in chromosome condensation. A similar phenotype was obtained by depleting histones H3 and H4 in early embryos, indicating that the defects in hairpin-binding protein-depleted embryos are caused by reduced histone biosynthesis. We have confirmed this by showing that HBP depletion reduces histone gene expression. Depletion of HBP during postembryonic development also results in defects in cell division during late larval development. In addition, we have observed defects in the specification of vulval cell fate in animals depleted for histone H3 and H4, which indicates that histone proteins are required for cell fate regulation during vulval development.
Resumo:
OBJECTIVE Vitamin D (D₃) status is reported to correlate negatively with insulin production and insulin sensitivity in patients with type 2 diabetes mellitus (T2DM). However, few placebo-controlled intervention data are available. We aimed to assess the effect of large doses of parenteral D3 on glycosylated haemoglobin (HbA(₁c)) and estimates of insulin action (homeostasis model assessment insulin resistance: HOMA-IR) in patients with stable T2DM. MATERIALS AND METHODS We performed a prospective, randomised, double-blind, placebo-controlled pilot study at a single university care setting in Switzerland. Fifty-five patients of both genders with T2DM of more than 10 years were enrolled and randomised to either 300,000 IU D₃ or placebo, intramuscularly. The primary endpoint was the intergroup difference in HbA(₁c) levels. Secondary endpoints were: changes in insulin sensitivity, albuminuria, calcium/phosphate metabolism, activity of the renin-aldosterone axis and changes in 24-hour ambulatory blood pressure values. RESULTS After 6 months of D₃ supply, there was a significant intergroup difference in the change in HbA(₁c) levels (relative change [mean ± standard deviation] +2.9% ± 1.5% in the D₃ group vs +6.9% ± 2.1% the in placebo group, p = 0.041) as HOMA-IR decreased by 12.8% ± 5.6% in the D₃ group and increased by 10% ± 5.4% in the placebo group (intergroup difference, p = 0.032). Twenty-four-hour urinary albumin excretion decreased in the D₃ group from 200 ± 41 to 126 ± 39, p = 0.021). There was no significant intergroup difference for the other secondary endpoints. CONCLUSIONS D₃ improved insulin sensitivity (based on HOMA-IR) and affected the course of HbA(₁c) positively compared with placebo in patients with T2DM.
Resumo:
Animal replication-dependent histone mRNAs are subject to several post-transcriptional regulatory processes. Their non-polyadenylated 3' ends are formed preferentially during S phase by a unique nuclear cleavage event. This requires the base pairing between U7 snRNA and a histone spacer element 3' of the cleavage site. Cleavage occurs preferentially after adenosine, at a fixed distance from the hybrid region. A conserved RNA hairpin just upstream of the cleavage site is recognised by the hairpin binding protein (HBP) that acts as an auxiliary processing factor, stabilising the interaction of the histone pre-mRNA with the U7 snRNP. The interaction between HBP and the RNA hairpin is very stable and HBP is also found associated with histone mRNAs on polysomes. The hairpin and presumably, HBP are also required for nuclear export and translation of histone mRNA. Furthermore, histone mRNAs are selectively destabilised in the G2 phase or upon inhibition of DNA synthesis and this regulation is also associated with the hairpin. Recently, HBP-encoding cDNAs were isolated from various organisms. Human, mouse and Xenopus laevis HBPs are similar, while the Caenorhabditis elegans protein has significant homology to the others only in a central RNA binding domain.Copyright 1997 Academic Press Limited
Resumo:
The hairpin structure at the 3' end of animal histone mRNAs controls histone RNA 3' processing, nucleocytoplasmic transport, translation and stability of histone mRNA. Functionally overlapping, if not identical, proteins binding to the histone RNA hairpin have been identified in nuclear and polysomal extracts. Our own results indicated that these hairpin binding proteins (HBPs) bind their target RNA as monomers and that the resulting ribonucleoprotein complexes are extremely stable. These features prompted us to select for HBP-encoding human cDNAs by RNA-mediated three-hybrid selection in Saccharomyces cerevesiae. Whole cell extract from one selected clone contained a Gal4 fusion protein that interacted with histone hairpin RNA in a sequence- and structure-specific manner similar to a fraction enriched for bovine HBP, indicating that the cDNA encoded HBP. DNA sequence analysis revealed that the coding sequence did not contain any known RNA binding motifs. The HBP gene is composed of eight exons covering 19.5 kb on the short arm of chromosome 4. Translation of the HBP open reading frame in vitro produced a 43 kDa protein with RNA binding specificity identical to murine or bovine HBP. In addition, recombinant HBP expressed in S. cerevisiae was functional in histone pre-mRNA processing, confirming that we have indeed identified the human HBP gene.
Resumo:
AIM Vitamin D deficiency is considered to diminish bone regeneration. Yet, raising the serum levels takes months. A topic application of the active vitamin D metabolite, calcitriol, may be an effective approach. Thus, it becomes important to know the effect of vitamin D deficiency and local application on alveolar bone regeneration. MATERIAL AND METHODS Sixty rats were divided into three groups; two vitamin depletion groups and a control group. Identical single defects (2 mm diameter) were created in the maxilla and mandible treated with calcitriol soaked collagen in one deficiency group while in the other two groups not. Histomorphometric analysis and micro CTs were performed after 1 and 3 weeks. Serum levels of 25(OH)D3 and PTH were determined. RESULTS Bone formation rate significantly increased within the observation period in all groups. Bone regeneration was higher in the maxilla than in the mandible. However, bone regeneration was lower in the control group compared to vitamin depletion groups, with no significant effects by local administration of calcitriol (micro CT mandible p = 0.003, maxilla p < 0.001; histomorphometry maxilla p = 0.035, mandible p = 0.18). CONCLUSION Vitamin D deficiency not necessarily impairs bone regeneration in the rat jaw and a single local calcitriol application does not enhance healing.
Resumo:
Changes in chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) binding protein (RBP), Rubisco activase (RA), Rubisco large (LS) and small (SS) subunits, and electrolyte leakage were investigated in wheat leaf segments during heat stress (HS) for 1 h and for 24 h at 40 °C in darkness or in light, as well as after recovery from heat stress (HSR) for 24 h at 25 °C in light. The 24-h HS treatment in darkness decreased irreversibly photosynthetic pigments, soluble proteins, RBP, RA, Rubisco LS and SS. An increase in RA and RBP protein contents was observed under 24-h HS and HSR in light. This increase was in accordance with their role as chaperones and the function of RBP as a heat shock protein.
Resumo:
INTRODUCTION The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e(-/-)) do not exhibit an obviously abnormal cartilaginous phenotype. We therefore analyzed embryogenesis of Tfap2e(-/-) mice to elucidate potential transient abnormalities that provide information on the influence of AP-2ε on skeletal development. In a second part, we aimed to define potential influences of AP-2ε on articular cartilage function and gene expression, as well as on OA progression, in adult mice. METHODS Murine embryonic development was accessed via in situ hybridization, measurement of skeletal parameters and micromass differentiation of mesenchymal cells. To reveal discrepancies in articular cartilage of adult wild-type (WT) and Tfap2e(-/-) mice, light and electron microscopy, in vitro culture of cartilage explants, and quantification of gene expression via real-time PCR were performed. OA was induced via surgical destabilization of the medial meniscus in both genotypes, and disease progression was monitored on histological and molecular levels. RESULTS Only minor differences between WT and embryos deficient for AP-2ε were observed, suggesting that redundancy mechanisms effectively compensate for the loss of AP-2ε during skeletal development. Surprisingly, though, we found matrix metalloproteinase 13 (Mmp13), a major mediator of cartilage destruction, to be significantly upregulated in articular cartilage of adult Tfap2e(-/-) mice. This finding was further confirmed by increased Mmp13 activity and extracellular matrix degradation in Tfap2e(-/-) cartilage explants. OA progression was significantly enhanced in the Tfap2e(-/-) mice, which provided evidence for in vivo relevance. This finding is most likely attributable to the increased basal Mmp13 expression level in Tfap2e(-/-) articular chondrocytes that results in a significantly higher total Mmp13 expression rate during OA as compared with the WT. CONCLUSIONS We reveal a novel role of AP-2ε in the regulation of gene expression in articular chondrocytes, as well as in OA development, through modulation of Mmp13 expression and activity.
Resumo:
BACKGROUND Low vitamin D levels have been associated with depressive symptoms in population-based studies and non-clinical samples as well as with clinical depression. This study aimed to examine the association of vitamin D levels with the severity and dimensions of depressive symptoms in hospitalized patients with a current episode of depression taking into account confounding variables. METHODS We investigated 380 patients (mean age 47 ± 12 years, 70% women) who were consecutively hospitalized with a main diagnosis of an ICD-10 depressive episode. All patients self-rated depressive symptom severity with the Hospital Anxiety and Depression Scale (HADS-D), the Beck Depression Inventory-II (BDI-II), and the Brief Symptom Inventory. A principal component analysis was performed with all 34 items of these questionnaires and serum levels of 25-hydroxyvitamin D3 (25-OH D) were measured. RESULTS Vitamin D deficiency (< 50 nmol/l), insufficiency (50-75 nmol/l), and sufficiency (> 75 nmol/l) were present in 55.5%, 31.8% and 12.6%, respectively, of patients. Patients with vitamin D deficiency scored higher on the HADS-D scale and on an anhedonia symptom factor than those with insufficient (p-values ≤ 0.023) or sufficient (p-values ≤ 0.008) vitamin D. Vitamin D deficient patients also scored higher on the BDI-II scale than those with sufficient vitamin D (p = 0.007); BDI-II cognitive/affective symptoms, but not somatic/affective symptoms, were higher in patients with vitamin D deficiency (p = 0.005) and insufficiency (p = 0.041) relative to those with sufficient vitamin D. Effect sizes suggested clinically relevant findings. CONCLUSIONS Low vitamin D levels are frequent in hospitalized patients with a current episode of depression. Especially 25-OH D levels < 50 nmol/l were associated with cognitive/affective depressive symptoms, and anhedonia symptoms in particular.
Resumo:
BACKGROUND The early diagnosis of acute myocardial infarction (AMI) very soon after symptom onset remains a major clinical challenge, even when using high-sensitivity cardiac troponin (hs-cTnT). METHODS AND RESULTS We investigated the incremental value of heart-type fatty acid-binding protein (hFABP) in a pre-specified subgroup analysis of patients presenting with suspected AMI within 1 h of symptom onset to the emergency department (ED) in a multicentre study. HFABP was measured in a blinded fashion. Two independent cardiologists using all available clinical information, including hs-cTnT, adjudicated the final diagnosis. Overall, 1411 patients were enrolled, of whom 105 patients presented within 1 h of symptom onset. Of these, 34 patients (32.4%) had AMI. The diagnostic accuracy as quantified by the area under the receiver-operating characteristics curve (AUC) of hFABP was high (0.84 (95% CI 0.74-0.94)). However, the additional use of hFABP only marginally increased the diagnostic accuracy of hs-cTnT (AUC 0.88 (95% CI 0.81-0.94) for hs-cTnT alone to 0.90 (95% CI 0.83-0.98) for the combination; p=ns). After the exclusion of 18 AMI patients with ST-segment elevation, similar results were obtained. Among the 16 AMI patients without ST-segment elevation, six had normal hs-cTnT at presentation. Of these, hFABP was elevated in two (33.3%) patients. CONCLUSIONS hFABP does not seem to significantly improve the early diagnostic accuracy of hs-cTnT in the important subgroup of patients with suspected AMI presenting to the ED very early after symptom onset.